Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

ОРГАНИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ ПРОЦЕССОВ В КЛЕТОЧНОМ ЯДРЕ: ПОРЯДОК, ВОЗНИКАЮЩИЙ ИЗ БЕСПОРЯДКА

Полный текст:

Аннотация

В обзоре рассматриваются современные представления о пространственной организации эукариотического генома и функциональной компарментализации клеточного ядра. Обосновываются представления о том, что упакованный в трехмерном пространстве клеточного ядра геном составляет структурную основу для компартментализации клеточного ядра. Анализиру­ются различные механизмы взаимного позиционирования удаленных элементов генома и механизмы возникновения функциональных компартментов внутри клеточного ядра, в том числе обсуждается возможная роль в этих процессах сил, возникающих в условиях макромолекуляр­ного скопления. В заключительном разделе обсуждается модель, постулирующая важную роль стохастических процессов в формировании так называемой “функциональной архитектуры” генома и сборке функциональных компартментов в клеточном ядре.

Об авторах

Сергей Владимирович Разин
биологический факультет МГУ; Ин­ститут биологии гена РАН
Россия

докт. биол. наук, проф., зав. кафедрой молекулярной биологии;

зав. лабораторией структурно-­функциональной организации хромосом



Алексей Александрович Гаврилов
Институт биологии гена РАН
Россия
канд. биол. наук, руководитель группы пространственной орга­низации генома


Список литературы

1. Singh Sandhu K., Li G., Sung W.K., Ruan Y. Chromatin interaction networks and higher order architectures of eukaryotic genomes // J. Cell. Biochem. 2011. Vol. 112. N 9. P. 2218—2221.

2. Ong C.T., Corces V.G. CTCF: an architectural protein bridging genome topology and function // Nat. Rev. Genet. 2014. Vol. 15. N 4. P. 234—246.

3. Cavalli G., Misteli T. Functional implications of genome topology // Nat. Struct. Mol. Biol. 2013. Vol. 20. N 3. P. 290—299.

4. Cook P.R. The organization of replication and transcription // Science. 1999. Vol. 284. N 5421. P. 1790—1795.

5. Papantonis A., Cook P.R. Fixing the model for transcription: the DNA moves, not the polymerase // Transcr. 2011. Vol. 2. N 1. P. 41—44.

6. Nakamura H., Morita T., Sato C. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus // Exp. Cell Res. 1986. Vol. 165. N 2. P. 291—297.

7. Ma H., Samarabandu J., Devdhar R.S., Acharya R., Cheng P.C., Meng C., Berezney R. Spatial and temporal dynamics of DNA replication sites in mammalian cells // J. Cell Biol. 1998. Vol. 143. N 6. P. 1415—1425.

8. Hassan A.B., Cook P.R. Visualization of replication sites in unfixed human cells // J. Cell Sci. 1993. Vol. 105. N 2. P. 541—550.

9. Hozak P., Cook P.R., Schofer C., Mosgoller W., Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells // J. Cell Sci. 1994. Vol. 107. N 2. P. 639—648.

10. Bregman D.B., Du L., van der Zee S., Warren S.L. Transcription­dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains // J. Cell Biol. 1995. Vol. 129. N 2. P. 287—298.

11. Iborra F.J., Pombo A., Jackson D.A., Cook P.R. Active RNA polymerases are localized within discrete transcription “factories” in human nuclei // J. Cell Sci. 1996. Vol. 109. N 6. Р. 1427—1436.

12. Kolovos P., Knoch T.A., Grosveld F.G., Cook P.R., Papantonis A. Enhancers and silencers: an integrated and simple model for their function // Epigenetics Chromatin. 2012. Vol. 5. N 1. P. 1.

13. Papantonis A., Cook P.R. Transcription factories: genome organization and gene regulation // Chem. Rev. 2013. Vol. 113. N 11. P. 8683—8705.

14. Sutherland H., Bickmore W.A. Transcription factories: gene expression in unions? // Nat. Rev. Genet. 2009. Vol. 10. N 7. P. 457—466.

15. Schoenfelder S., Clay I., Fraser P. The transcriptional interactome: gene expression in 3D // Curr. Opin. Genet. Dev. 2010. Vol. 20. N 2. P. 127—133.

16. Schoenfelder S., Sexton T., Chakalova L. et al. Preferential associations between co­regulated genes reveal a transcriptional interactome in erythroid cells // Nat. Genet. 2010. Vol. 42. N 1. P. 53—61.

17. Nizami Z., Deryusheva S., Gall J.G. The Cajal body and histone locus body // Cold Spring Harb. Perspect. Biol. 2010. Vol. 2. N 7. P. a000653.

18. Lallemand­Breitenbac, V., de The H. PML nuclear bodies // Cold Spring Harb. Perspect. Biol. 2010. Vol. 2. N 5. P. a000661.

19. Spector D.L., Lamond A.I. Nuclear speckles // Cold Spring Harb. Perspect. Biol. 2011. Vol. 3. N 2. P. a000646.

20. Fox A.H., Lamond A.I. Paraspeckles // Cold Spring Harb. Perspect. Biol. 2010. Vol. 2. N 7. P. a000687.

21. Gerasimova T.I., Byrd K., Corces V.G. A chromatin insulator determines the nuclear localization of DNA // Mol. Cell. 2000. Vol. 6. N 5. P. 1025—1035.

22. Pirrotta V., Li H.B. A view of nuclear Polycomb bodies // Curr. Opin. Genet. Dev. 2012. Vol. 22. N 2. P. 101—109.

23. Ching R.W., Dellaire G., Eskiw C.H., Bazett­Jones D.P. PML bodies: a meeting place for genomic loci? // J. Cell Sci. 2005. Vol. 118. N 5. P. 847—854.

24. Wang J., Shiels C., Sasieni P., Wu P.J., Islam S.A., Freemont P.S., Sheer D. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions // J. Cell Biol. 2004. Vol. 164. N 4. P. 515—526.

25. Brown J.M., Green J., das Neves R.P., Wallace H.A., Smith A.J., Hughes J., Gray N., Taylor S., Wood W.G., Higgs D.R., Iborra F.J., Buckle V.J. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment // J. Cell Biol. 2008. Vol. 182. N 6. P. 1083—1897.

26. Szczerbal I., Bridger J.M. Association of adipogenic genes with SC­35 domains during porcine adipogenesis // Chromosome Res. 2010. Vol. 18. N 8. P. 887—895.

27. Shopland L.S., Johnson C.V., Byron M., McNeil J., Lawrence J.B. Clustering of multiple specific genes and gene­rich R­bands around SC­35 domains: evidence for local euchromatic neighborhoods // J. Cell Biol. 2003. Vol. 162. N 6. P. 981—990.

28. van Driel R., Fransz P.F., Verschure P.J. The eukaryotic genome: a system regulated at different hierarchical levels // J. Cell Sci. 2003. Vol. 116. N 20. P. 4067—4075.

29. Schneider R., Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression // Genes Dev. 2007. Vol. 21. N 23. P. 3027—3043.

30. Schul W., de Jong L., van Driel R. Nuclear neighbours: the spatial and functional organization of genes and nuclear domains // J. Cell. Biochem. 1998. Vol. 70. N 2. P. 159—171.

31. Osborne C.S., Chakalova L., Brown K.E., Carter D., Horton A., Debrand E., Goyenechea B., Mitchell J.A., Lopes S., Reik W., Fraser P. Active genes dynamically colocalize to shared sites of ongoing transcription // Nat. Genet. 2004. Vol. 36. N 10. P. 1065—1071.

32. Brown J.M., Leach J., Reittie J.E., Atzberger A., Lee­Prudhoe J., Wood W.G., Higgs D.R., Iborra F.J., Buckle V.J. Coregulated human globin genes are frequently in spatial proximity when active // J. Cell Biol. 2006. Vol. 172. N 2. P. 177—187.

33. Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation // Science. 2002. Vol. 295. N 5558. P. 1306—1311.

34. Tolhuis B., Palstra R.J., Splinter E., Grosveld F., de Laat W. Looping and interaction between hypersensitive sites in the active beta­globin locus // Mol. Cell. 2002. Vol. 10. N 6. P. 1453—1465.

35. de Laat W., Grosveld F. Spatial organization of gene expression: the active chromatin hub // Chromosome Res. 2003. Vol. 11. N. P. 447—459.

36. de Laat W., Klous P., Kooren J., Noordermeer D., Palstra R.J., Simonis M., Splinter E., Grosveld F. Threedimensional organization of gene expression in erythroid cells // Curr. Top. Dev. Biol. 2008. Vol. 82. P. 117—139.

37. Ptashne M. How eukaryotic transcriptional activators work // Nature. 1988. Vol. 335. N 6192. P. 683—689.

38. Ptashne M., Gann A. Transcriptional activation by recruitment // Nature. 1997. Vol. 386. N 6625. P. 569—577.

39. Plank J.L., Dean A. Enhancer function: mechanistic and genome­wide insights come together // Mol. Cell. 2014. Vol. 55. N 1. P. 5—14.

40. Belin B.J., Mullins R.D. What we talk about when we talk about nuclear actin // Nucleus. 2013. Vol. 4. N 4. P. 291—297.

41. de Lanerolle P. Nuclear actin and myosins at a glance // J. Cell Sci. 2012. Vol. 125. N 21. P. 4945—4949.

42. Grosse R., Vartiainen M.K. To be or not to be assembled: progressing into nuclear actin filaments // Nat. Rev. Mol. Cell. Biol. 2013. Vol. 14. N 11. P. 693—697.

43. Treisman R. Shedding light on nuclear actin dynamics and function // Trends Biochem. Sci. 2013. Vol. 38. N 8. P. 376—377.

44. Kowalczyk M.S., Hughes J.R., Garrick1 D. et al. Intragenic enhancers act as alternative promoters // Mol. Cell. 2012. Vol. 45. N 4. P. 447—458.

45. Marques A.C., Hughes J., Graham B., Kowalczyk M.S., Higgs D.R., Ponting C.P. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs // Genome Biol. 2013. Vol. 14. N 11. P. R131.

46. Zirkel A., Papantonis A. Transcription as a force partitioning the eukaryotic genome // Biol. Chem. 2014. Vol. 395. N 11. P. 1301—1305.

47. Razin S.V., Gavrilov A.A., Ioudinkova E.S., Iarovaia O.V. Communication of genome regulatory elements in a folded chromosome // FEBS Lett. 2013. Vol. 587. N 13. P. 1840—1847.

48. Marshall W.F., Fung J.C., Sedat J.W. Deconstructing the nucleus: global architecture from local interactions // Curr. Opin. Genet. Dev. 1997. Vol. 7. N 2. P. 259—263.

49. Marshall W.F., Straight A., Marko J.F., Swedlow J., Dernburg A., Belmont A., Murray A.W., Agard D.A., Sedat J.W. Interphase chromosomes undergo constrained diffusional motion in living cells // Curr. Biol. 1997. Vol. 7. N 12. P. 930—939.

50. Pliss A., Malyavantham K.S., Bhattacharya S., Berezney R. Chromatin dynamics in living cells: identification of oscillatory motion // J. Cell. Physiol. 2013. Vol. 228. N 3. P. 609—616.

51. Misteli T. Protein dynamics: implications for nuclear architecture and gene expression // Science. 2001. Vol. 291. N 5505. P. 843—847.

52. Ioudinkova E.S., Gavrilov A.A., Razin S.V. Folded genome as a platform for the functional compartmentalization of the eukaryotic cell nucleus // Biopolym. Cell. 2014. Vol. 30. N 2. P. 83—89.

53. Phillips­Cremins J.E., Corces V.G. Chromatin insulators: linking genome organization to cellular function // Mol. Cell. 2013. Vol. 50. N 4. P. 461—474.

54. Nolis I.K., McKay D.J., Mantouvalou E., Lomvardas S., Merika M., Thanos D. Transcription factors mediate long­range enhancer­promoter interactions // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106. N 48. P. 20222—20227.

55. Hancock R. Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model // Biol. Cell. 2004. Vol. 96. N 8. P. 595—601.

56. Marenduzzo D., Micheletti C., Cook P.R. Entropydriven genome organization // Biophys. J. 2006. Vol. 90. N 10. P. 3712—3721.

57. Marenduzzo D., Finan K., Cook P.R. The depletion attraction: an underappreciated force driving cellular organization // J. Cell. Biol. 2006. Vol. 175. N 5. P. 681—686.

58. Mitchell J.A., Fraser P. Transcription factories are nuclear subcompartments that remain in the absence of transcription // Genes Dev. 2008. Vol. 22. N 1. P. 20—25.

59. Razin S.V., Gavrilov A.A., Pichugin A., Lipinski M., Iarovaia O.V., Vassetzky Y.S. Transcription factories in the context of the nuclear and genome organization // Nucleic Acids Res. 2011. Vol. 39. N 21. P. 9085—9092.

60. Razin S.V., Gavrilov A.A., Yarovaya O.V. Transcription factories and spatial organization of eukaryotic genomes // Biochemistry (Mosc.). 2010. Vol. 75. N 11. P. 1307—1315.

61. Kim T.K., Hemberg M., Gray J.M. et al. Widespread transcription at neuronal activity­regulated enhancers // Nature. 2010. Vol. 465. N 7295. P. 182—187.

62. De Santa F., Barozzi I., Mietton F., Ghisletti S., Polletti S., Tusi B.K., Muller H., Ragoussis J., Wei C.L., Natoli G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers // PLoS Biol. 2010. Vol. 8. N 5. P. e1000384.

63. Natoli G., Andrau J.C. Noncoding transcription at enhancers: general principles and functional models // Annu. Rev. Genet. 2012. Vol. 46. P. 1—19.

64. Nagano T., Lubling Y., Stevens T.J., Schoenfelder S., Yaffe E., Dean W., Laue E.D., Tanay A., Fraser P. Single­cell Hi­C reveals cell­to­cell variability in chromosome structure // Nature. 2013. Vol. 502. N 7469. P. 59—64.

65. Gavrilov A.A., Chetverina H.V., Chermnykh E.S., Razin S.V., Chetverin A.B. Quantitative analysis of genomic element interactions by molecular colony technique // Nucleic Acids Res. 2014. Vol. 42. N 5. P. e36.

66. Gavrilov A.A., Golov A.K., Razin S.V. Actual ligation frequencies in the chromosome conformation capture procedure // PLoS One. 2013. Vol. 8. N 3. P. e60403.

67. Berezney R., Mortillaro M.J., Ma H., Wei X., Samarabandu J. The nuclear matrix: a structural milieu for genomic function // Int. Rev. Cytol. 1995. Vol. 162. P. 1—12, 12a, 12b, 12c, 12d, 13—65.

68. Razin S.V., Borunova V.V., Iarovaia O.V., Vassetzky Y.S. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus // Biochemistry (Mosc.). 2014. Vol. 79. N 7. P. 608—618.

69. Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells // Nat. Rev. Genet. 2001. Vol. 2. N 4. P. 292—301.

70. Rosa A., Everaers R. Structure and dynamics of interphase chromosomes // PLoS Comput. Biol. 2008. Vol. 4. N 8. P. e1000153.

71. Tark­Dame M., van Driel R., Heermann D.W. Chromatin folding — from biology to polymer models and back // J. Cell Sci. 2011. Vol. 124. N 6. P. 839—845.

72. Bolzer A., Kreth G., Solovei I., Koehler D., Saracoglu K., Fauth C., Muller S., Eils R., Cremer C., Speicher M.R., Cremer T. Three­dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes // PLoS Biol. 2005. Vol. 3. N 5. P. e157.

73. Croft J.A., Bridger J.M., Boyle S., Perry P., Teague P., Bickmore W.A. Differences in the localization and morphology of chromosomes in the human nucleus // J. Cell Biol. 1999. Vol. 145. N 6. P. 1119—1131.

74. Guelen L., Pagie L., Brasset E., Meuleman W., Faza M.B., Talhout W., Eussen B.H., de Klein A., Wessels L., de Laat W., van Steensel B. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions // Nature. 2008. Vol. 453. N 7197. P. 948—951.

75. van Koningsbruggen S., Gierlinski M., Schofield P., Martin D., Barton G.J., Ariyurek Y., den Dunnen J.T., Lamond A.I. High­resolution whole­genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli // Mol. Biol. Cell. 2010. Vol. 21. N 21. P. 3735—3748.

76. Cremer T., Cremer M. Chromosome territories // Cold Spring Harb. Perspect. Biol. 2010. Vol. 2. N 3. P. a003889.

77. Dai J., Han Y., Xu B., Li Y., Liu J., Zhao Y., Zhang F. Ultrastructural changes of nucleoli in common wheat induced by actinomycin D // Biotech Histochem. 2005. Vol. 80. N 5—6. P. 223—225.

78. Turner A.J., Knox A.A., Watkins N.J. Nucleolar disruption leads to the spatial separation of key 18S rRNA processing factors // RNA Biol. 2012. Vol. 9. N 2. P. 175—186.

79. Hancock R. The crowded nucleus // Int. Rev. Cell Mol. Biol. 2014. Vol. 307. P. 15—26.

80. Mao Y.S., Sunwoo H., Zhang B., Spector D.L. Direct visualization of the co­transcriptional assembly of a nuclear body by noncoding RNAs // Nat. Cell. Biol. 2011. Vol. 13. N 1. P. 95—101.


Для цитирования:


Разин С.В., Гаврилов А.А. ОРГАНИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ ПРОЦЕССОВ В КЛЕТОЧНОМ ЯДРЕ: ПОРЯДОК, ВОЗНИКАЮЩИЙ ИЗ БЕСПОРЯДКА. Вестник Московского университета. Серия 16. Биология. 2015;(3):13-20.

For citation:


Razin S.V., Gavrilov A.A. ORGANIZATION OF FUNCTIONAL PROCESSES IN THE CELL NUCLEUS: THE ORDER EMERGING OUT OF DISORDER. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(3):13-20. (In Russ.)

Просмотров: 172


ISSN 0137-0952 (Print)