Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

EPIGENETIC AND ENDOCRINE DETERMINANTS OF DIFFERENCES IN LIFESPAN BETWEEN CASTES OF SOCIAL INSECTS

Abstract

Social insects are promising model organisms in the study of the mechanisms determining longevity. They have the caste system in which the same genome may produce phenotypes significantly differing in longevity. In honeybee, caste differentiation depends on the duration of supply by specific nutrient mixture (royal jelly) on the larval stage. Longer feeding by the royal jelly leads to the formation of the queen epigenome which differs from the epigenome of worker bee. Such epigenetic differences, in turn, induce endocrine changes manifested in increased synthesis of juvenile hormone and activation of TOR signaling pathway, as well as in the modulation of insulin/IGF-1 pathway in queen-destined larvae. In adults, these processes influence the synthesis of vitellogenin (egg yolk precursor affecting many aspects of insect ontogenesis). Epigenetic and endocrine mechanisms that underlie differences in longevity among social insect castes are discussed.

About the Author

A. M. Vaiserman
ГУ “Институт геронтологии им. Д.Ф. Чеботарева” НАМН Украины, Киев, Украина
Russian Federation


References

1. Vaiserman A.M. Early-life nutritional programming of longevity // J. Dev. Orig. Health Dis. 2014. Vol. 5. N 5. P. 325–338.

2. Münch D., Kreibich C.D., Amdam G.V. Aging and its modulation in a long-lived worker caste of the honey bee // J. Exp. Biol. 2013. Vol. 216. N 9. P. 1638–1649.

3. Remolina S.C., Hughes K.A. Evolution and mechanisms of long life and high fertility in queen honey bees // Age (Dordr). 2008. Vol. 30. N 2–3. P. 177–185.

4. Winston M.L. The biology of the honey bee. Cambridge: Harvard Univ. Press, 1991. 294 p.

5. Welch M., Lister R. Epigenomics and the control of fate, form and function in social insects // Curr. Opin. Insect Sci. 2014. Vol. 1. P. 31–38.

6. Weiner S.A., Toth A.L. Epigenetics in social insects: a new direction for understanding the evolution of castes // Genet. Res. Int. 2012. Vol. 2012. ID: 609810.

7. Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators // Trends Biochem. Sci. 2006. Vol. 31. N 2. P. 89–97.

8. Ванюшин Б.Ф. Эпигенетика сегодня и завтра // Вавиловский журн. генет. и селекции. 2013. T. 17. № 4/2. С. 805–832.

9. Lyko F., Maleszka R. Insects as innovative models for functional studies of DNA methylation // Trends Genet. 2011. Vol. 27. N 4. P. 127–131.

10. Kucharski R., Maleszka J., Foret S., Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation // Science. 2008. Vol. 319. N 5871. P. 1827–1830.

11. Lyko F., Foret S., Kucharski R., Wolf S., Falckenhayn C., Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers // PLoS Biol. 2010. Vol. 8. N 11. e1000506.

12. Foret S., Kucharski R., Pellegrini M., Feng S., Jacobsen S.E., Robinson G.E., Maleszka R. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. N 13. P. 4968–4973.

13. Ikeda T., Furukawa S., Nakamura J., Sasaki M., Sasaki T. CpG methylation in the hexamerin 110 gene in the European honeybee, Apis mellifera // J. Insect. Sci. 2011. Vol. 11. N 1. P. 74.

14. Shi Y.Y., Huang Z.Y., Zeng Z.J., Wang Z.L., Wu X.B., Yan W.Y. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae) // PLoS One. 2011. Vol. 6. N 4. e18808.

15. Shi Y.Y., Yan W.Y., Huang Z.Y., Wang Z.L., Wu X.B., Zeng Z.J. Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera) // Naturwissenschaften. 2013. Vol. 100. N 2. P. 193–197.

16. Bonasio R., Li Q., Lian J. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator // Curr. Biol. 2012. Vol. 22. N 19. P. 1755–1764.

17. Bonasio R., Zhang G., Ye C. et al. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator // Science. 2010. Vol. 329. N 5995. P. 1068–1071.

18. Rothbart S.B., Strahl B.D. Interpreting the language of histone and DNA modifications // Biochim. Biophys. Acta. 2014. Vol. 1839. N 8. P. 627–643.

19. Simola D.F., Ye C., Mutti N.S., Dolezal K., Bonasio R., Liebig J., Reinberg D., Berger S.L. A chromatin link to caste identity in the carpenter ant Camponotus floridanus // Genome Res. 2013. Vol. 23. N 3. P. 486–496.

20. Spannhoff A., Kim Y.K., Raynal N.J., Gharibyan V., Su M.B., Zhou Y.Y., Li J., Castellano S., Sbardella G., Issa J.P., Bedford M.T. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees // EMBO Rep. 2011. Vol. 12. N. 3. P. 238–243.

21. Weaver D.B., Anzola J.M., Evans J.D., Reid J.G., Reese J.T., Childs K.L., Zdobnov E.M., Samanta M.P., Miller J., Elsik C.G. Computational and transcriptional evidence for microRNAs in the honey bee genome // Genome Biol. 2007. Vol. 8. N 6. P. 97.

22. Guo X., Su S., Skogerboe G., Dai S., Li W., Li Z., Liu F., Ni R., Guo Y., Chen S., Zhang S., Chen R. Recipe for a busy bee: microRNAs in honey bee caste determination // PLoS One. 2013. Vol. 8. N 12. e81661.

23. Corona M., Estrada E., Zurita M. Differential expression of mitochondrial genes between queens and workers during caste determination in the honeybee Apis mellifera // J. Exp. Biol. 1999. Vol. 202. N 8. P. 929–938.

24. Evans J.D., Wheeler D.E. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. N 10. P. 5575–5580.

25. Cristino A.S., Nunes F.M., Lobo C.H., Bitondi M.M., Simões Z.L., da Fontoura Costa L., Lattorff H.M., Moritz R.F., Evans J.D., Hartfelder K. Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality // Insect Mol. Biol. 2006. Vol. 15. N 5. P. 703–714.

26. Begna D., Fang Y., Feng M., Li J. Mitochondrial proteins differential expression during honeybee (Apis mellifera L.) queen and worker larvae caste determination // J.Proteome Res. 2011. Vol. 10. N 9. P. 4263–4280.

27. Barchuk A.R, dos Santos Cristino A., Kucharski R., da Fontoura Costa L., Simies Z.L.P., Maleszka R. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera // BMC Dev. Biol. 2007. Vol. 7. N 70.

28. Chen X., Hu Y., Zheng H., Cao L., Niu D., Yu D., Sun Y., Hu S., Hu F. Transcriptome comparison between honey bee queen- and worker-destined larvae // Insect Biochem. Mol. Biol. 2012. Vol. 42. N 9. P. 665–673.

29. Grozinger C.M., Fan Y., Hoover S.E., Winston M.L. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera) // Mol. Ecol. 2007. Vol. 16. N 22. P. 4837–4848.

30. Azevedo S.V., Caranton O.A., de Oliveira T.L., Hartfelder K. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development // J. Insect Physiol. 2011. Vol. 57. N 1. P. 38–45.

31. Aamodt R.M. Age- and caste-dependent decrease in expression of genes maintaining DNA and RNA quality and mitochondrial integrity in the honeybee wing muscle // Exp. Gerontol. 2009. Vol. 44. N 9. P. 586–593.

32. Pereboom J.J., Jordan W.C., Sumner S., Hammond R.L., Bourke A.F. Differential gene expression in queen-worker caste determination in bumble-bees // Proc. Biol. Sci. 2005. Vol. 272. N 1568. P. 1145–1152.

33. Feldmeyer B., Elsner D., Foitzik S. Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones // Mol. Ecol. 2014. Vol. 23. N 1. P. 151–161.

34. Koch S.I., Groh K., Vogel H., Hansson B.S., Kleineidam C.J., Grosse-Wilde E. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri // PLoS One. 2013. Vol. 8. N 11. e81518.

35. Gräff J., Jemielity S., Parker J.D., Parker K.M., Keller L. Differential gene expression between adult queens and workers in the ant Lasius niger // Mol. Ecol. 2007. Vol. 16. N 3. P. 675–683.

36. Corona M., Hughes K.A., Weaver D.B., Robinson G.E. Gene expression patterns associated with queen honey bee longevity // Mech. Ageing Dev. 2005. Vol. 126. N 11. P. 1230– 1238.

37. Parker J.D., Parker K.M., Sohal B.H., Sohal R.S., Keller L. Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. N 10. P. 3486–3489.

38. Capella I.C., Hartfelder K. Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (Apis mellifera L.) ovary // J. Insect Physiol. 1998. Vol. 44. N 5–6. P. 385–391.

39. Wheeler D.E., Buck N., Evans J.D. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera // Insect Mol. Biol. 2006. Vol. 15. N 5. P. 597–602.

40. de Azevedo S.V., Hartfelder K. The insulin signaling pathway in honey bee (Apis mellifera) caste development — differential expression of insulin-like peptides and insulin receptors in queen and worker larvae // J. Insect Physiol. 2008. Vol. 54. N 6. P. 1064–1071.

41. Wang Y., Azevedo S.V., Hartfelder K., Amdam G.V. Insulin-like peptides (AmILP1 and AmILP2) differentially affect female caste development in the honey bee (Apis mellifera L.) // J. Exp. Biol. 2013. Vol. 216. N 23. P. 4347–4357.

42. Wolschin F., Mutti N.S., Amdam G.V. Insulin receptor substrate influences female caste development in honeybees // Biol. Lett. 2011. Vol. 7. N 1. P. 112–115.

43. Kamakura M. Royalactin induces queen differentiation in honeybees // Nature. 2011. Vol. 473. N 7348. P. 478–483.

44. Patel A., Fondrk M.K., Kaftanoglu O., Emore C., Hunt G., Frederick K., Amdam G.V. The making of a queen: TOR pathway is a key player in diphenic caste development // PLoS One. 2007. Vol. 2. N 6. e509.

45. Shao X.L., He S.Y., Zhuang X.Y., Fan Y., Li Y.H., Yao Y.G. mRNA expression and DNA methylation in three key genes involved in caste differentiation in female honeybees (Apis mellifera) // Dongwuxue Yanjiu (Zool. Res.). 2014. Vol. 35. N 2. P. 92–98.

46. Mutti N.S., Dolezal A.G., Wolschin F., Mutti J.S., Gill K.S., Amdam G.V. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate // J. Exp. Biol. 2011. Vol. 214. N 23. P. 3977–3984.

47. Wheeler D.E., Buck N.A., Evans J.D. Expression of insulin/insulin-like signalling and TOR pathway genes inhoney bee caste determination // Insect Mol. Biol. 2014. Vol. 23. N 1. P. 113–121.

48. Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. N 4. P. 962–967.

49. Corona M., Velarde R.A., Remolina S., Moran-Lauter A., Wang Y., Hughes K.A., Robinson G.E. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104. N 17. P. 7128–7133.

50. Vaiserman A. Developmental epigenetic programming of caste-specific differences in social insects: an impact on longevity // Curr. Aging Sci. 2014. Vol. 7. N 3. P. 176–186.


Review

For citations:


Vaiserman A.M. EPIGENETIC AND ENDOCRINE DETERMINANTS OF DIFFERENCES IN LIFESPAN BETWEEN CASTES OF SOCIAL INSECTS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(4):8-14. (In Russ.)

Views: 314


ISSN 0137-0952 (Print)