Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

DISTRIBUTION OF IONS AND ELECTROSTATIC POTENTIAL IN NUCLEOSOMES AS STUDIED WITH MOLECULAR DYNAMICS

Abstract

The principles of nucleosome organization and formation were studied using molecular modeling approach. Nucleosomes are compact protein–DNA complexes that plays the key role in DNA compactization and regulation of gene transcription and expression. Nucleosome assembly and operation strongly depends on the ionic environment and electrical characteristics of the medium. The distribution of monovalent ions in the system was determined. The preferred locations of the ions were
identified. The distribution of electrostatic potential around nucleosome was investigated using a new method for averaging the distribution around macromolecule drifting in the volume of the computational cell.

About the Authors

G. A. Armeev
кафедра биоинженерии биологического факультета МГУ
Russian Federation


K. V. Shaitan
кафедра биоинженерии биологического факультета МГУ
Russian Federation


A. K. Shaytan
кафедра биоинженерии биологического факультета МГУ
Russian Federation


References

1. Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 angstrom resolution // J. Mol. Biol. 2002. Vol. 319. N 5. P. 1097–1113.

2. Vasudevan D., Chua E.Y.D., Davey C.A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence // J. Mol. Biol. 2010. Vol. 403. N 1. P. 1–10.

3. Thiriet C., Hayes J.J. Replication-independent core histone dynamics at transcriptionally active loci in vivo // Gene Dev. 2005. Vol. 19. N 6. P. 677–682.

4. Studitsky V.M., Clark D.J., Felsenfeld G. Overcoming a nucleosomal barrier to transcription // Cell. 1995. Vol. 83. N 1. P. 19–27.

5. Andrews A.J., Luger K. A coupled equilibrium approach to study nucleosome thermodynamics // Methods Enzymol. 2011. Vol. 488. P. 265–85.

6. Banks D.D., Gloss L.M. Equilibrium folding of the core histones: The h3-h4 tetramer is less stable than the h2a-h2b dimer // Biochemistry. 2003. Vol. 42. N 22. P. 6827–39.

7. Davey C.A., Richmond T.J. DNA-dependent divalent cation binding in the nucleosome core particle // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. N 17. P. 11169–11174.

8. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the amber ff99sb protein force field // Proteins. 2010. Vol. 78. N 8. P. 1950–1958.

9. Pronk S., Pall S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J.C., Kasson P.M., van der Spoel D., Hess B., Lindahl E. Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit // Bioinformatics. 2013. Vol. 29. N 7. P. 845–854.

10. Humphrey W., Dalke A., Schulten K. Vmd: Visual molecular dynamics // J. Mol. Graph. Model. 1996. Vol. 14. N 1. P. 33–38.

11. Aksimentiev A., Schulten K. Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map // Biophys. J. 2005. Vol. 88. N. 6. P. 3745–3761.

12. Savelyev A., Papoian G.A. Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+) // J. Am. Chem. Soc. 2006. Vol. 128. N 45. P. 14506–14518.

13. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. “Lomonosov”: Supercomputing at Moscow State University // Contemporary high performance сomputing: from petascale toward exascale / Ed. by S.V. Jeffery. Boca Raton: CRC Press, 2013. P. 283–307.


Review

For citations:


Armeev G.A., Shaitan K.V., Shaytan A.K. DISTRIBUTION OF IONS AND ELECTROSTATIC POTENTIAL IN NUCLEOSOMES AS STUDIED WITH MOLECULAR DYNAMICS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(4):24-28. (In Russ.)

Views: 345


ISSN 0137-0952 (Print)