Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

OBTAINING AND CHARACTERIZATION OF SPHERICAL PARTICLES — NEW BIOGENIC PLATFORMS

Abstract

The technique of spherical particles obtaining from rod-like plant virus — tobacco mosaic virus in preparative scale was developed. The conditions of tobacco mosaic virus isolation for spherical particles obtaining were selected. Spherical particles were examined by methods of electron microscopy, nanoparticle tracking analysis and dynamic light scattering. Information about inner structure of spherical particles was obtained. High electron density of spherical particles was demonstrated. The analysis of ultrathin sections showed that spherical particles are homogeneous within and do not contain any cavities.

About the Authors

E. A. Trifonova
кафедра вирусологии биологического факультета МГУ
Russian Federation


N. A. Nikitin
кафедра вирусологии биологического факультета МГУ
Russian Federation


M. P. Kirpichnikov
кафедра вирусологии биологического факультета МГУ
Russian Federation


O. V. Karpova
кафедра вирусологии биологического факультета МГУ
Russian Federation


J. G. Atabekov
кафедра вирусологии биологического факультета МГУ
Russian Federation


References

1. Lico C., Mancini C., Italiani P., Betti C., Boraschi D., Benvenuto E., Bashieri S. Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice // Vaccine. 2009. Vol. 27. N 37. P. 5069–5076.

2. Karpova O., Nikitin N., Chirkov S., Trifonova E., Sheveleva A., Lazareva E., Atabekov J. Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platform and foreign antigens // J. Gen. Virol. 2012. Vol. 93. N 2. P. 400–407.

3. Nikitin N., Trifonova E., Karpova O., Atabekov J. Examination of biologically active nanocomplexes by nanoparticle tracking analysis // Microsc. Microanal. 2013. Vol. 19. N 4. P. 808–813.

4. Trifonova E., Nikitin N., Gmyl A., Lazareva E., Karpova O., Atabekov J. Complexes assembled from TMV-derived spherical particles and entire virions of heterogeneous nature // J. Biomol. Struct. Dyn. 2014. Vol. 32. N 8. P. 1193–1201.

5. Nikitin N.A., Malinin A.S., Trifonova E.A., Rakhnyanskaya A.A., Yaroslavov A.A., Karpova O.V., Atabekov J.G. Proteins immobilization on the surface of modified plant viral particles coated with hydrophobic polycations // J. Biomat. Sci. Polym. Ed. 2014. Vol. 25. N 16. P. 1743–1754.

6. Soto C.M., Ratna B.R. Virus hybrids as nanomaterials for biotechnology // Curr. Opin. Biotechnol. 2010. Vol. 21. N 4. P. 426–438.

7. Leong H.S., Steinmetz N.F., Ablack A., Destito G., Zijlstra A., Stuhlmann H., Manchester M., Lewis J.D. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles // Nat. Protoc. 2010. Vol. 5. N 8. P. 1406–1417.

8. Bruckman M.A., Hern S., Jiang K., Flask C.A., Yu X., Steinmetz N.F. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents // J. Mater. Chem. B. Mater. Biol. Med. 2013. Vol. 1. N 10. P. 1482–1490.

9. Aljabali A.A., Shukla S., Lomonossoff G.P., Steinmetz N.F., Evans D.J. CPMV-DOX Delivers // Mol. Pharm. 2013. Vol. 10. N 1. P. 3–10.

10. Lebel M.E., Daudelin J.F., Chartrand K., Tarrab E., Kalinke U., Savard P., Labrecque N., Leclerc D., Lamarre A. Nanoparticle adjuvant sensing by TLR7 enhances CD8+T cell-mediated protection from Listeria monocytogenes infection // J. Immunol. 2014. Vol. 192. N 3. P. 1071–1078.

11. Atabekov J., Nikitin N., Arkhipenko M., Chirkov S., Karpova O. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles // J. Gen. Virol. 2011. Vol. 92. N 2. P. 453–456.

12. Nikitin N.A., Malinin A.S., Rakhnyanskaya A.A., Trifonova E.A., Karpova O.V., Yaroslavov A.A., Atabekov J.G. Use of a polycation spacer for noncovalent immobilization of albumin on thermally modified virus particles // Polym. Sci. Ser. A. 2011. Vol. 53. N 11. P. 1026–1031.

13. Bruckman M.A., VanMeter A., Stienmetz N.F. Nanomanufacturing of tobacco mosaic virus-based spherical biomaterials using a continuous flow method // ACS Biomater. Sci. Eng. 2015. Vol. 1. N 1. P. 13–18.

14. Volkova E.G., Kurchashova S.Y., Polyakov V.Y., Sheval E.V. Self-organization of cellular structures induced by the overexpression of nuclear envelope proteins: a correlative light and electron microscopy study // J. Electron Microsc. 2011. Vol. 60. N 1. P. 57–71.

15. ASTM Standard E2834, 2012. ASTM International. West Conshohocken. PA, 2012.

16. Loh E., Ralston E., Schumaker V.N. Quasielastic light scattering from solutions of filamentous viruses. I. Experimental // Biopolymers. 1979. Vol. 18. N 10. P. 2549–2567.

17. Sano Y. Translational diffusion coefficient of tobacco mosaic virus particles // J. Gen. Virol. 1987. Vol. 68. N 9. P. 2439–2442.

18. Dobrov E.N., Nikitin N.A., Trifonova E.A., Parshina E.Y., Makarov V.V., Maksimov G.V., Karpova O.V., Atabekov J.G. β-structure of the coat protein subunits in spherical particles generated by tobacco mosaic virus thermal denaturation // J. Biomol. Struct. Dyn. 2014. Vol. 32. N 5. P. 701–708.

19. Sehgal O.P, Jean J., Bhalla R.B., Soong M.M., Krause G.F. Correlation between buoyant density and ribonucleic acid content in viruses // Phytopathology. 1970. Vol. 60. N 12. P. 1778–1784.


Review

For citations:


Trifonova E.A., Nikitin N.A., Kirpichnikov M.P., Karpova O.V., Atabekov J.G. OBTAINING AND CHARACTERIZATION OF SPHERICAL PARTICLES — NEW BIOGENIC PLATFORMS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(4):46-50. (In Russ.)

Views: 458


ISSN 0137-0952 (Print)