Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

WHICH AGING IN YEAST IS “TRUE”?

Abstract

Two model systems — “replicative aging” and “chronological aging” (CA), used for gerontological research on the yeast Saccharomyces cerevisiae are compared. In the first case the number of daughter cells generated by an individual mother cell before cell propagation irreversibly stops is analyzed. This makes the model very similar to the well-known Hayflick model. In case of CA the survival of yeast cell population in the stationary phase of growth is studied. It is noted that the second model is pretty similar to the “stationary phase aging” model used in the author’s laboratory for cytogerontological studies on animal and human cells. It is considered that the conception of cell proliferation restriction as the main reason of age-related accumulation in the cells of multicellular organisms of macromolecular defects (mainly — DNA damage) leading to deterioration of tissue and organ functioning and, as a result, to the increase of death probability allows to explain how the aging process proceeds in almost any living organisms. Apparently, in all cases the process is initiated by appearance of slow propagating (or not propagating at all) cells which leads to the stopping “dilution”, with the help of new cells, of macromolecular defects accumulating at the level of whole cell population. It is concluded that data obtained in testing on the yeast CA model of various factors for their geropromoter or geroprotector activity can be with high reliability used for understanding mechanisms of human aging and longevity.

About the Author

A. N. Khokhlov
Evolutionary Cytogerontology Sector, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234, Russia
Russian Federation


References

1. Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859–864.

2. Khokhlov A.N., Wei L., Li Y., He J. Teaching cytogerontology in Russia and China // Adv. Gerontol. 2012. Vol. 25. N 3. P. 513–516.

3. Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14–20.

4. Khokhlov A.N. Evolution of the term “cellular senescence” and its impact on the current cytogerontological research // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 4. P. 158–161.

5. Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703–708.

6. Aging research in yeast: Subcell. Biochem. Vol. 57 / Eds. M. Breitenbach, S.M. Jazwinski, and P. Laun. Springer Netherlands, 2012. 368 pp.

7. Longo V.D., Shadel G.S., Kaeberlein M., Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae // Cell Metab. 2012. Vol. 16. N 1. P. 18–31.

8. Laun P., Bruschi C.V., Dickinson J.R., Rinnerthaler M., Heeren G., Schwimbersky R., Rid R., Breitenbach M. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing // Nucleic Acids Res. 2007. Vol. 35. N 22. P. 7514–7526.

9. Fabrizio P., Longo V.D. The chronological life span of Saccharomyces cerevisiae // Aging Cell. 2003. Vol. 2. N 2. P. 73–81.

10. Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475–476.

11. Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10–14.

12. Khokhlov A.N., Morgunova G.V. On the constructing of survival curves for cultured cells in cytogerontological experiments: a brief note with three hierarchy diagrams // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 2. P. 67–71.

13. Roux A.E., Quissac A., Chartrand P., Ferbeyre G., Rokeach L.A. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2 // Aging Cell. 2006. Vol. 5. N 4. P. 345–357.

14. Конев С.В., Мажуль В.М. Межклеточные контакты. Минск: Наука и техника, 1977. 312 с.

15. Khokhlov A.N. Decline in regeneration during aging: appropriateness or stochastics? // Russ. J. Dev. Biol. 2013. Vol. 44. N 6. P. 336–341.

16. Jones O.R., Scheuerlein A., Salguero-Gómez R., Camarda C.G., Schaible R., Casper B.B., Dahlgren J.P., Ehrlén J., García M.B., Menges E.S., Quintana-Ascencio P.F., Caswell H., Baudisch A., Vaupel J.W. Diversity of ageing across the tree of life // Nature. 2014. Vol. 505. N 7482. P. 169–173.

17. Khokhlov A.N. On the immortal hydra. Again // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 4. P. 153–157.

18. Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР. Серия “Общие проблемы физико-химической биологии”. Т. 9. М.: ВИНИТИ, 1988. 176 с.

19. Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.

20. Khokhlov A.N. Does aging need an own program or the existing development program is more than enough? // Russ. J. Gen. Chem. 2010. Vol. 80. N 7. P. 1507–1513.

21. Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150–154.

22. Martínez D.E., Bridge D. Hydra, the everlasting embryo, confronts aging // Int. J. Dev. Biol. 2012. Vol. 56. N 6–8. P. 479–487.


Review

For citations:


Khokhlov A.N. WHICH AGING IN YEAST IS “TRUE”? Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):14-16. (In Russ.)

Views: 434


ISSN 0137-0952 (Print)