Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

ANTI-HER2 PHOTOTOXIN BASED ON FLAVOPROTEIN MINISOG CAUSES OXIDATIVE STRESS AND NECROSIS ON HER2-POSITIVE CANCER CELLS

Abstract

Development and functional characterization of novel high-affinity protein compounds that can selectively kill human cancer cells, is an important task of modern biomedical research. In this work the cytotoxicity of recombinant phototoxic protein DARPin-miniSOG on HER2- positive breast adenocarcinoma human cells has been studied. It was determined that targeted phototoxin DARPin-miniSOG specifically interacts with HER2 receptor and causes necrotic death of HER2-positive cells induced by illumination. Treatment of the cells with DARPinminiSOG in the presence of ascorbic acid eliminates the light-induced cytotoxic action of the protein that confirmed the mechanism of action of the protein through oxidative stress.

About the Authors

O. N. Shilova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997, Russia
Russian Federation


G. M. Proshkina
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997, Russia
Russian Federation


A. V. Ryabova
Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov ul. 38, Moscow, 119991, Russia
Russian Federation


S. M. Deyev
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya ul. 16/10, GSP-7, Moscow, 117997, Russia Department of Immunology, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234, Russia
Russian Federation


References

1. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene // Science. 1987. Vol. 235. N 4785. P. 177–182.

2. Gusterson B.A., Gelber R.D., Goldhirsch A. et al. Prognostic importance of c-erbB-2 expression in breast cancer // J. Clin. Oncol. 1992. Vol. 10. N 7. P. 1049–1056.

3. Binz H.K., Amstutz P., Kohl A., Stumpp M.T., Briand C., Forrer P., Grutter M.G., Pluckthun A. High-affinity binders selected from designed ankyrin repeat protein libraries // Nat. Biotechnol. 2004. Vol. 22. N 5. P. 575–582.

4. Interlandi G., Wetzel S.K., Settanni G., Plückthun A., Caflisch A. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments // J. Mol. Biol. 2008. Vol. 375. N 3. P. 837–854.

5. Zahnd C., Kawe M., Stumpp M.T., Pasquale C., Tamaskovic R., Nagy-Davidescu G., Dreier B., Schibli R., Binz H.K., Waibel R., Plückthun A. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size // Cancer Res. 2010. Vol. 70. N 4. P. 1595–1605.

6. Deyev S.M., Lebedenko E.N., Petrovskaya L.E., Dolgikh D.A., Gabibov A.G. , Kirpichnikov M.P. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering // Rus. Chem. Rev. 2015. Vol. 84. N 1. P. 1–26.

7. Steiner D., Forrer P., Plückthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display // J. Mol. Biol. 2008. Vol. 382. N 5. P. 1211–1227.

8. Shu X., Lev-Ram V., Deerinck T.J., Qi Y., Ramko E.B., Davidson M.W., Jin Y., Ellisman M.H., Tsien R.Y. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms // PLoS Biol. 2011. Vol. 9. N 4. e1001041.

9. Шилова О.Н., Прошкина Г.М., Лебеденко Е.Н., Деев С.М. // Интернализация и рециркуляция рецептора HER2 при взаимодействии адресного фототоксичного белка DARPin-miniSOG с клетками аденокарциномы молочной железы человека. 2015. Acta Naturae. №3. С. 79–86.

10. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. Vol. 65. N 1–2. P. 55–63.

11. Ryumina A.P., Serebrovskaya E.O., Shirmanova M.V., Snopova L.B., Kuznetsova M.M., Turchin I.V., Ignatova N.I., Klementieva N.V., Fradkov A.F., Shakhov B.E., Zagaynova E.V., Lukyanov K.A., Lukyanov S.A. Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells // Biochim. Biophys. Acta. 2013. Vol. 1830. N 11. P. 5059–5067.

12. Mironova K.E., Proshkina G.M., Ryabova A.V., Stremovskiy O.A., Lukyanov S.A., Petrov R.V., Deyev S.M. Genetically encoded immunophotosensitizer 4D5scFvminiSOG is a highly selective agent for targeted photokilling of tumor cells in vitro // Theranostics. 2013. Vol. 3. N 11. P. 831–840.

13. Gülçin İ. Antioxidant activity of food constituents: an overview // Arch. Toxicol. 2012. Vol. 86. N 3. P. 345–391.

14. Girotti A.W. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms // J. Photochem. Photobiol. 2001. Vol. 63. N 1-3. P. 103–113.

15. Finkel T. Signal transduction by reactive oxygen species // J. Cell. Biol. 2011. Vol. 194. N 1. P. 7–15.


Review

For citations:


Shilova O.N., Proshkina G.M., Ryabova A.V., Deyev S.M. ANTI-HER2 PHOTOTOXIN BASED ON FLAVOPROTEIN MINISOG CAUSES OXIDATIVE STRESS AND NECROSIS ON HER2-POSITIVE CANCER CELLS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):17-22. (In Russ.)

Views: 410


ISSN 0137-0952 (Print)