Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

SALICYLHYDROXAMIC ACID ACCELERATES THE NADH OXIDASE ACTIVITY OF PEROXIDASE IN SUSPENSIONS OF PEA MITOCHONDRIA AND CHLOROPLASTS

Abstract

Salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase in plant mitochondria, accelerated the NADH-oxidase activity in suspensions of mitochondria and chloroplasts, obtained by their isolation from the roots or leaves of pea, respectively. The reaction was suppressed by washing mitochondria and chloroplasts. It also proceeded in supernatants where the organelles were removed by centrifugation. The reaction was sensitive to CN– and propyl gallate, an antioxidant. In addition to SHAM, NADH oxidation was stimulated by 2,4-dichlorophenol or phenol, but not by salicylic acid. The acceleration of NADH oxidation by the phenolic compounds occurred in the presence of commercial horseradish peroxidase. It is due to the involvement of these compounds in the NADH-dependent peroxidase reaction. 2,4-Dichlorophenol and SHAM enhanced significantly destruction of nuclei in guard cells of the epidermis from pea leaves induced by generation of reactive oxygen species under oxidation of exogenous NADH by means of the apoplastic peroxidase.

About the Authors

V. D. Samuilov
Department of Immunology, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234, Russia
Russian Federation


D. B. Kiselevsky
Department of Immunology, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119234, Russia
Russian Federation


References

1. Moore A.L., Siedow J.N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria // Biochim. Biophys. Acta. 1991. Vol. 1059. N 2. P. 121–140.

2. Rasmusson A.G., Soole K.L., Elthon T.E. Alternative NAD(P)H dehydrogenases of plant mitochondria // Annu. Rev. Plant Biol. 2004. Vol. 55. P. 23–39.

3. Samuilov V.D., Kiselevsky D.B. Effect of cationic plastoquinone SkQ1 on electron transfer reactions in chloroplasts and mitochondria from pea seedlings // Biochemistry (Mosc.). 2015. Vol. 80. N 4. P. 417–423.

4. Yamazaki I., Yokota K. Oxidation states of peroxidase // Mol. Cell. Biochem. 1973. Vol. 2. N 1. P. 39–52.

5. Halliwell B. Lignin synthesis: The generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols // Planta. 1978. Vol. 140. N 1. P. 81–88.

6. Bronnikova T.V., Fed’kina V.R., Schaffer W.M., Olsen L.F. Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction // J. Phys. Chem. 1995. Vol. 99. N 23. P. 9309–9312.

7. Hauser M.J.B., Olsen L.F. The role of naturally occurring phenols in inducing oscillations in the peroxidase-oxidase reaction // Biochemistry. 1998. Vol. 37. N 8. P. 2458–2469.

8. Samuilov V.D., Vasil’ev L.A., Dzyubinskaya E.V., Kiselevsky D.B., Nesov A.V. Programmed cell death in plants: protective effect of phenolic compounds against chitosan and H2O2 // Biochemistry (Mosc.). 2010. Vol. 75. N 2. P. 257–263.

9. Yokota K., Yamazaki I. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase // Biochemistry. 1977. Vol. 16. N 9. P. 1913–1920.

10. Барский Е.Л., Губанова О.Н., Самуилов В.Д. Ингибирование фотосинтетического переноса электронов в хлоропластах м-хлоркарбонилцианидфенилгидразоном // Биохимия. 1991. Т. 56. № 3. C. 434–438.

11. Millenaar F.F., Benschop J.J., Wagner A.M., Lambers H. The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase // Plant Physiol. 1998. Vol. 118. N 2. P. 599–607.

12. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid // Anal. Biochem. 1985. Vol. 150. N 1. P. 76–85.

13. de Visser R., Blacquière T. Inhibition and stimulation of root respiration in Pisum and Plantago by hydroxamate: its consequences for the assessment of alternative path activity // Plant Physiol. 1984. Vol. 75. N 3. P. 813–817.

14. Brouwer K.S., van Valen T., Day D.A., Lambers H. Hydroxamate-stimulated O2 uptake in roots of Pisum sativum and Zea mays, mediated by a peroxidase: its consequences for respiration measurements // Plant Physiol. 1986. Vol. 82. N 1. P. 236–240.

15. Kawano T., Muto S., Adachi M., Hosoya H., Lapeyrie F. Spectroscopic evidence that salicylic acid converts a temporally inactivated form of horseradish peroxidase (compound III) to the irreversibly inactivated verdohemoprotein (P-670) // Biosci. Biotechnol. Biochem. 2002. Vol. 66. N 3. P. 646–650.

16. Allan A.C., Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells // Plant Cell. 1997. Vol. 9. N 9. P. 1559–1572.

17. Samuilov V.D., Lagunova E.M., Beshta O.E., Kitashov A.V. CN–-Induced degradation of nuclei in cells of pea leaves // Biochemistry (Mosc.). 2000. Vol. 65. N 6. P. 696–702.


Review

For citations:


Samuilov V.D., Kiselevsky D.B. SALICYLHYDROXAMIC ACID ACCELERATES THE NADH OXIDASE ACTIVITY OF PEROXIDASE IN SUSPENSIONS OF PEA MITOCHONDRIA AND CHLOROPLASTS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):23-28. (In Russ.)

Views: 310


ISSN 0137-0952 (Print)