Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

MODELING OF POTEIN-DNA COMPLEXES GEOMETRY UTILISING FRET AND FOOTPRINTING DATA

Abstract

We discuss the question of constructing three-dimensional models of DNA complexed with proteins on the basis of computer modeling and indirect methods for studying the structure of macromolecules. We consider methods of interpreting the experimental data obtained by indirect methods for studying the three-dimensional structure of biomolecules. We discuss some aspects of the integration of such data in to the process of molecular models building (based on the geometric characteristics of DNA). We propose an algorithm for the estimation of protein-DNA complexes structure on the basis of information about the local DNA flexibility and experimental data obtained by Forster resonance energy transfer (FRET) and hydroxyl footprinting methods. Finally, we use this method for prediction of the hypothetical configuration of DNA in nucleosome bound with histone H1.

About the Authors

G. A. Armeev
Department of Bioengineering, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1–12, Moscow, 119234, Russia
Russian Federation


T. K. Gorkovets
Department of Bioengineering, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1–12, Moscow, 119234, Russia
Russian Federation


D. A. Efimova
Department of Bioengineering, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1–12, Moscow, 119234, Russia
Russian Federation


K. V. Shaitan
Department of Bioengineering, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1–12, Moscow, 119234, Russia
Russian Federation


A. K. Shaytan
Department of Bioengineering, School of Biology, M.V. Lomonosov Moscow State University, Leninskiye gory 1–12, Moscow, 119234, Russia
Russian Federation


References

1. Kornberg R.D. Chromatin structure: a repeating unit of histones and DNA // Science. 1974. Vol. 184. N 4139. P. 868–871.

2. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.

3. Studitsky V.M., Clark D.J., Felsenfeld G. Overcoming a nucleosomal barrier to transcription // Cell. 1995. Vol. 83. N 1. P. 19–27.

4. Shaytan A.K., Landsman D., Panchenko A.R. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers // Curr. Opin. Struct. Biol. 2015. Vol. 32. P. 48–57.

5. Schalch T., Duda S., Sargent D.F., Richmond T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre // Nature. 2005. Vol. 436. N 7047. P. 138–141.

6. Mueller-Planitz F., Klinker H., Becker P.B. Nucleosome sliding mechanisms: new twists in a looped history // Nat. Struct. Mol. Biol. 2013. Vol. 20. N 9. P. 1026–1032.

7. Duyne V., Vinogradov S.A., Lampson M.A., Black B.E., Falk S.J., Guo L.Y., Sekulic N., Smoak E.M., Mani T., Logsdon G.A., Gupta K., Jansen L.E.T., Gregory D. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere // Science. 2015. Vol. 348. N 6235. P. 699–703.

8. Hayes J.J., Tullius T.D., Wolffe A.P. The structure of DNA in a nucleosome // Proc. Natl. Acad. Sci. USA. 1990. Vol. 87. N 19. P. 7405–7409.

9. Jain S.S., Tullius T.D. Footprinting protein-DNA complexes using the hydroxyl radical // Nat. Protoc. 2008. Vol. 3. N 6. P. 1092–1100.

10. Shaytan A.K., Armeev G.A., Goncearenco A., Zhurkin V.B., Landsman D., Panchenko A.R. Combined influence of linker DNA and histone tails on nucleosome dynamics as revealed by microsecond molecular dynamics simulations // J. Biomol. Struct. Dyn. 2015. Vol. 33. Suppl 1. P. 3.

11. Dickerson R.E., Bansal M., Calladine C.R., Diekmann S., Hunter W.N., Kennard O., von Kitzing E., Lavery R., Nelson H.C.M., Olson W.K. Definitions and nomenclature of nucleic acid structure parameters // J. Mol. Biol. 1989. Vol. 205. N 4. P. 787–791.

12. Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J.C., Kasson P.M., van der Spoel D., Hess B., Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit // Bioinformatics. 2013. Vol. 29. N 7. P. 845–854.

13. Shadle S.E., Allen D.F., Guo H., Pogozelski W.K., Bashkin J.S., Tullius T.D. Quantitative analysis of electrophoresis data: novel curve fitting methodology and its application to the determination of a protein—DNA binding constant // Nucleic Acids Res. 1997. Vol. 25. N 4. P. 850–860.

14. Olson W.K., Gorin A.A., Lu X.-J., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. N 19. P. 11163–11168.

15. Lu X., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures // Nucleic Acids Res. 2003. Vol. 31. N 17. P. 5108–5121.

16. Zhou B.-R., Feng H., Kato H., Dai L., Yang Y., Zhou Y., Bai Y. Structural insights into the histone H1-nucleosome complex // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. N 48. P. 19390–19395.

17. Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution // J. Mol. Biol. Elsevier. 2002. Vol. 319. N 5. P. 1097–1113.

18. Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S. Single-base resolution mapping of H1–nucleosome interactions and 3D organization of the nucleosome // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. N 21. P. 9620–9625.


Review

For citations:


Armeev G.A., Gorkovets T.K., Efimova D.A., Shaitan K.V., Shaytan A.K. MODELING OF POTEIN-DNA COMPLEXES GEOMETRY UTILISING FRET AND FOOTPRINTING DATA. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):35-40. (In Russ.)

Views: 571


ISSN 0137-0952 (Print)