LOV AND BLUF FLAVOPROTEINS: REGULATORY PHOTORECEPTORS OF MICROORGANISMS AND PHOTOSENSORY ACTUATORS IN OPTOGENETIC SYSTEMS
Abstract
In recent years, it has been shown that LOV (light, oxygen, voltage) and BLUF (Blue Light sensing Using FAD) photosensory proteins are functioning as photoreceptors of light-regulated processes not only in eukaryotes but also in numerous prokaryotes. In bacterial photoreceptors, LOV and BLUF domains with attached flavin chromophores are often associated with different effector domains, which possess enzymatic and other functions, constituting modular lightswitchable systems. Nowadays, progress has been achieved in uncovering the photoactivation mechanisms of such systems, which based on the chromophore photoreaction-induced changes in the photosensory domain structures and subsequent signal transduction to the effector domains. Knowledge of signal transduction principles in LOV and BLUF photosensors is important for designing on their basis photo-switchable enzymes and transcriptional systems, which have been applied in optogenetics — a new field in cell biology and biotechnology. The structural aspects of signal transduction by light-activated LOV and BLUF photoreceptors and their regulatory functions in bacteria as well as on some recent advances in using LOV and BLUF photosensors as actuators in optogenetic systems for regulation of cellular processes are discussed.
About the Authors
G. Ya. FraikinRussian Federation
M. G. Strakhovskaya
Russian Federation
N. S. Belenikina
Russian Federation
A. B. Rubin
Russian Federation
References
1. Fraikin G.Ya., Strakhovskaya M.G., Rubin A.B. Biological photoreceptors of light-dependent regulatory processes // Biochemistry (Mosc.). 2013. Vol. 78. N 11. P. 1238–1253.
2. Losi A., Gartner W. Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors // Photochem. Photobiol. 2011. Vol. 87. N 3. P. 491–510.
3. Losi A., Gartner W. Bacterial bilin- and flavin-binding photoreceptors // Photochem. Photobiol. Sci. 2008. Vol. 7. N 10. P. 1168–1178.
4. Yuan H., Dragnea V., Wu Q., Gardner K.H., Bauer C.E. Mutational and structure studies of the PixD BLUF output signal that affects light-regulated interaction with PixE // Biochemistry. 2011. Vol. 50. N 29. P. 6365–6375.
5. Khrenova M.G., Nemukhin A.V., Domratcheva T. Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors // J. Phys. Chem. B. 2013. Vol. 117. N 8. P. 2369–2377.
6. Masuda S. Light detection and signal transduction in the BLUF photoreceptors //Plant Cell Physiol. 2013. Vol. 54. N 2. P. 171–179.
7. Barends T.R.M., Hartmann E., Griese J.J., Beitlich T., Kirienko N.V., Ryjenkov D.A., Reinstein J., Shoeman R.L., Gomelsky M., Schlichting I. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase // Nature. 2009. Vol. 459. N 7249. P. 1015–1018.
8. Winkler A., Udvarhelyi A., Hartmann E., Reinstein J., Menzel A., Shoeman R.L., Schlichting I. Characterization of elements involved in allosteric light regulation of phosphodiesterase activity by comparison of different functional BlrP1 states // J. Mol. Biol. 2014. Vol. 426. N 4. P. 853–868.
9. Stierl M., Stumpf P., Udvari D., Gueta R., Hagedorn R., Losi A., Gartner W., Petereit L., Efetova M., Schwarzel M., Oertner T.G., Nagel G., Hegemann P. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa // J. Biol. Chem. 2011. Vol. 286. N 2. P. 1181–1188.
10. Ryu M.-H., Moskvin O.V., Siltberg-Liberies J., Gomelsky M. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications // J. Biol. Chem. 2010. Vol. 285. N 53. P. 41501–41508.
11. Tanaka K., Nakasone Y., Okajima K., Ikeuchi M., Tokutomi S., Terazima M. Time-resolved tracking of interprotein signal transduction: Synechocystis PixD — PixE complex as a sensor of light intensity // J. Amer. Chem. Soc. 2012. Vol. 134. N 20. P. 8336–8339.
12. Ren S., Sawada M., Hasegawa K., Hayakawa Y., Ohta H., Masuda S.A. PixD — PapB chimeric protein reveals the function of the BLUF domain C-terminal α-helices for light-signal transduction // Plant Cell Physiol. 2012. Vol. 53. N 9. P. 1638–1647.
13. Tschowri N., Linderberg S., Hengge R. Molecular function and potencial evolution of the biofilm-modulating blue light-signaling pathway of Escherichia coli // Mol. Microbiol. 2012. Vol. 85. N 5. P. 893–906.
14. Winkler A., Heintz U., Lindner R., Reinstein J., Shoeman R.L., Schlichting I. A ternary AppA — PpsR — DNA complex mediates light-regulation of photosynthesisrelated gene expression // Nat. Struct. Mol. Biol. 2013. Vol. 20. N 7. P. 859–867.
15. Herrou J., Crosson S. Function, structure, and mechanism in bacterial photosensory LOV proteins // Nat. Rev. Microbiol. 2011. Vol. 9. N 10. P. 713–723.
16. Losi A., Gartner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy bluelight sensors // Ann. Rev. Plant Biol. 2012. Vol. 63. P. 49–72.
17. Chen C.-H., Loros J.J. Neurospora sees the light // Commun. Integrat. Biol. 2009. Vol. 2. N 5. P. 448–451.
18. Malzahn E., Ciprianidis S., Kaldi K., Schafmeier T., Brunner M. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains // Cell. 2010. Vol. 142. N 5. P. 762–772.
19. Chen C.H., DeMay B.S., Gladfelter A.S., Dunlap J.C., Loros J.J. Physical interaction between VIVID and white collar complex regulates phoroadaptation in Neurospora // Proc. Nat. Acad. Sci. USA. 2010. Vol. 107. N 38. P. 16715–1672.
20. Zoltowski B.D., Crane B.R. Light activation of the LOV protein VIVID generates a rapidly exchanging dimer // Biochemistry. 2008. Vol. 47. N 27. P. 7012–7019.
21. Hunt S., Thompson S., Elvin M., Heintzen C. VIVID interacts with the WHITE COLLAR complex and FREQUENCY- interacting RNA helicase to alter light and clock responses in Neurospora // Proc. Nat. Acad. Sci. USA. 2010. Vol. 107. N 38. P. 16709–16714.
22. Cao Z., Livoti E., Losi A., Gartner W.A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus // Photochem. Photobiol. 2010. Vol. 86. N 5. P. 606–611.
23. Avila-Perez M., Vreede J., Tang Y., Bende O., Losi A., Gartner W., Hellingwerf K. In vivo mutational analysis of YtvA from Bacillus subtilis: mechanism of light activation of the general stress response // J. Biol. Chem. 2009. Vol. 284. N 37. P. 24958–24964.
24. Tang Y., Cao Z., Livoti E., Krauss U., Jaeger K.-E., Gartner W., Losi A. Interdomain signaling in the blue-light sensing and GTP-binding protein YtvA: a mutagenesis study uncovering the importance of specific protein sites // Photochem. Photobiol. Sci. 2010. Vol. 9. N 1. P. 47–56.
25. Nakasone Y., Hellingwerf K.J. On the binding of BODIPY — GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis // Photochem. Photobiol. 2011. Vol. 87. N 3. P. 542–547.
26. Jurk M., Dorn M., Kekhney A., Svergun D., Gartner W., Schmieder P. The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by combined AUC and SAXS study // J. Mol. Biol. 2010. Vol. 403. N 1. P. 78–87.
27. Pathak G.P., Vrana J.D., Tucker C.L. Optogenetic control of cell function using engineered photoreceptors // Biol. Cell. 2013. Vol. 105. N 2. P. 59–72.
28. Moglich A., Moffat K. Engineered photoreceptors as novel optogenetic tools // Photochem. Photobiol. Sci. 2010. Vol. 9. N 10. P. 1286–1300.
29. Zoltowski B.D., Gardner K.H. Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein — protein interactions // Biochemistry. 2011. Vol. 50. N 1. P. 4–16.
30. Christie J.M., Gawthorne J., Young G., Fraser N.J., Roe A.J. LOV to BLUF: flavoproteins contributions to the optogenetic toolkit // Mol. Plant. 2012.Vol. 5. N 3. P. 533–544.
31. Krauss U., Drepper T., Jaeger K.E. Enlightened enzymes: strategies to create novel photoresponsive proteins // Chem. Eur. J. 2011.Vol. 17. N 9. P. 2552–2560.
32. Krauss U., Lee J., Benkovic S.J., Jaeger K.E. LOVely enzymes — towards engineering light-controable biocatalysts // Microb. Biotech. 2010. Vol. 3. N 1. P. 15–23.
33. Wu Y.I., Frey D., Lungu O.I., Jaehrig A., Schlichting I., Kuhlman B., Hahn K.M. A genetically encoded photoactivatable Rac controls the motility of living cells // Nature. 2009. Vol. 461. N 7260. P. 104–108.
34. Wang X., He L., Wu Y.I., Hahn K.M., Montell D.J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo // Nat. Cell Biol. 2010. Vol. 12. N 6. P. 591–597.
35. Strickland D., Yao X., Gawlak G., Rosen M.K., Gardner K.H., Sosnick T.R. Rationally improving LOV domainbased photoswitches // Nat. Methods. 2010. Vol. 7. N 8. P. 623–626.
36. Moglich A., Ayers R.A., Moffat K. Design and signaling mechanism of light- regulated histidine kinases // J. Mol. Biol. 2009. Vol. 385. N 7. P. 1433–1444.
37. Ohlendorf R., Vidavski R.R., Eldar A., Moffat K., Moglich A. From Dusk till Dawn: one-plasmid systems for light-regulated gene expression // J. Mol. Biol. 2012. Vol. 416. N 3. P. 534–542.
38. Wang X., Chen X., Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system // Nat. Methods. 2012. Vol. 9. N 3. P. 266–269.
39. Pathak G.P., Losi A., Gartner W.Metagenome-based screening reveals worldwide distribution of LOV-domain proteins // Photochem. Photobiol. 2012. Vol. 88. N 1. P. 107–118.
40. Weissenberger S., Schultheis C., Liewald J.F., Erbguth K., Nagal G., Gottschalk A. PACα — an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans // J. Neurochem. 2011. Vol. 116. N 6. P. 616–625.
Review
For citations:
Fraikin G.Ya., Strakhovskaya M.G., Belenikina N.S., Rubin A.B. LOV AND BLUF FLAVOPROTEINS: REGULATORY PHOTORECEPTORS OF MICROORGANISMS AND PHOTOSENSORY ACTUATORS IN OPTOGENETIC SYSTEMS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):57-65. (In Russ.)