Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Quorum sensing and communication of bacteria

Abstract

Bacteria are capable “to sense” an increase of cell density population and to reply on it by the induction of special sets of genes. This type of the regulation named quorum sensing (QS) includes the production and excretion from cells into the medium low-molecular-weight signaling molecules (autoinducers, AI) which readily diffuse through a cell wall. As the bacterial population reaches a critical level of density, the concentration of these signaling molecules in medium increases as a function of density population. On reaching a critical threshold concentration, AIs bind to the specific receptor regulatory proteins which induce the expression of target genes. By means of AIs bacteria accomplish communication that is transmission of the information between bacteria belonging to the same or different species, genera, and even families — signaling molecules of some bacteria act on the receptors of others, resulting in coordinated reply of bacterial cells in population. Bacteria of different taxonomic groups use QS systems in the regulation of the broad range of physiological activities. These processes involve virulence, symbiosis, conjugation, biofilms formation, bioluminescence, synthesis of enzymes, antibiotic substances etc. Here we review the different QS systems of bacteria, the role of QS in bacteria communication and some applied aspects of QS regulation application.

About the Authors

I. A. Khmel
Institute of Molecular Genetics, RAS
Russian Federation


A. S. Belik
Institute of Molecular Genetics, RAS
Russian Federation


U. V. Zaitseva
Institute of Molecular Genetics, RAS
Russian Federation


N. N. Danilova
Institute of Molecular Genetics, RAS
Russian Federation


References

1. Гинцбург А.Л., Ильина Т.С., Романова Ю.М. 2003. “Quorum sensing” или социальное поведение бактерий // Журн. микробиол., эпидемиол. и иммунол. № 5. 86—93.

2. Завильгельский Г.Б., Манухов И.В. 2001. “Quorum sensing”, или Как бактерии “разговаривают” друг с другом // Молекуляр. биология. 35. 268—277.

3. Ильина Т.С., Романова Ю.М., Гинцбург А.Л. 2004. Биопленки как способ существования бактерий в окружающей среде и организме хозяина: феномен, генетический контроль и системы регуляции их развития // Генетика. 40. 1445—1456.

4. Хмель И.А., Метлицкая А.З. 2006. Quorum sensing регуляция экспрессии генов — перспективная мишень для создания лекарств против патогенности бактерий // Молекуляр. биология. 40. 195—210.

5. Ahmer B.M.M. 2004. Cell-to-cell signaling in Escherichia coli and Salmonella enterica // Molecular. Microbiol. 52. 933—945.

6. Bauer W.D., Mathesius U. 2004. Plant responses to bacterial quorum-sensing signals // Curr. Opin. Plant Biol. 7. 429—433.

7. Chen X., Schauder S., Potler N., VanDorsselaer A., Pelscer I., Bassler B.L., Hughson F.M. 2002. Structural identification of a bacterial quorum-sensing signal containing boron // Nature. 415. 545—549.

8. Chun C.K., Ozer E.A., Welsh M. J., Zabner J., Greenberg E. P. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia // Proc. Natl. Acad. Sci. USA. 101. 3587—3590.

9. Costerton J. W., Stewart P. S., Greenberg E. P. 1999. Bacterial biofilms: a common cause of persistent infections // Science. 284. 1318—1322.

10. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm // Science. 280. 295—298.

11. De Kievit T. R., Iglewski B. H. 2000. Bacterial quorum sensing in pathogenic relationships // Infection and Immunity. 68. 4839—4849.

12. Dong Y. H., Xu J. L., Li X. Z., Zhang L. H. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora // Proc. Natl. Acad. Sci. USA. 97. 3526—3531.

13. Dong Y. H., Zhang X. F., Xu J. L., Zhang L. H. 2004. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference // Appl. Environ. Microbiol. 70. 954—960.

14. Fuqua W. C., Winans S. C., Greenberg E. P. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators // Ann. Rev. Microbiol. 50. 727—751.

15. Gov Y., Bitler A., Dell ’ Acqua G., Torres J. V., Balaban N. 2001. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis // Peptides. 22. 1609—1620.

16. Hentzer M., Givskov M. 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections // J. Clin. Invest. 112. 1300—1307.

17. Lewenza S., Visser M. B., Sokol P. A. 2002. Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa // Can. J. Microbiol. 48. 707—716.

18. Lyon G. J., Novick R. P. 2004. Peptide signaling in Staphylococcus aureus and other gram-positive bacteria // Peptides. 25. 1389—1403.

19. March J. C., Bentley W. E. 2004. Quorum sensing and bacterial cross-talk in biotechnology // Current Opinion in Biotechnology. 15. 495—502.

20. Mc Kenney D., Brown K. E., Allison D. G. 1995. Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication // J. Bacteriol. 177. 6989—6992.

21. Miller M. B., Bassler B. L. 2001. Quorum sensing in bacteria / Ann. Rev. Microbiol. 55. 165—199.

22. Pearson J. P., Pesci E. C., Iglewski B. H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorumsensing systems in control of elastase and rhamnolipid biosynthesis genes // J. Bacteriol. 179. 5756—5767.

23. Pierson E. A., Wood D. W., Cannon J. A., Blashere F. M., Pierson L. S. III. 1998. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere // Mol. Plant-Microbe Interact. 11. 1078—1084.

24. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis // J. Bacteriol. 185. 2066—2079.

25. Telford G., Wheeler D., Williams P., Tomkins P. T., Appleby P., Sewell H., Stewart G. S., Bycroft B. W., Pritchard D. I. 1998. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity // Infection and Immunity. 66. 36—42.

26. Veselova M., Kholmeckaya M., Klein S., Voronina E., Lipasova V., Metlitskaya A., Mayatskaya A., Lobanok L., Khmel I., Chernin L. S. 2003. Production of N-acylhomoserine lactone signal molecules by gram-negative soil-borne and plant-associated bacteria // Folia Microbiol. 48. 794—798.

27. Waters C., Bassler B. 2005. Quorum sensing: cell-to-cell communication in bacteria // Ann. Rev. Cell Dev. Biol. 21. 319—346.

28. Wood D. W., Gong F., Daykin M. M., Williams P., Pierson L. S. III. 1997. N-acyl-homoserine lactone — mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30—84 in the wheat rhizosphere // J. Bacterial. 179. 7663—7670.


Review

For citations:


Khmel I.A., Belik A.S., Zaitseva U.V., Danilova N.N. Quorum sensing and communication of bacteria. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2008;(1):28-35. (In Russ.)

Views: 474


ISSN 0137-0952 (Print)