Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Microbial physiology: problems and prospects

Abstract

Physiology is a science on functions. Functions of microorganisms, as for every living thing, are metabolism and energy provision, reproduction and death, regulation of vital activity on the intracellular level and on the level of interactions between microbial cells and abiogenous factors, on the level of microbe-microbial interactions and interactions of microorganisms with plants, animals and man. According to metabolic and energetic potentials, microorganisms are subdivided into photo- and chemotrophs, litho- and organotrophs, auto- and heterotrophs; procaryotic organisms assimilate molecular nitrogen. The noted functions are subjected to versatile regulation that is a basis for intra- and intercellular communications. Microbial responses to exposure on macroorganisms is an introduction or a prevention of programmed cell death (PCD) in infected organisms, a change to inactive state (persistence). An induction of programmed cell death in cells affected by illness that can be spreaded to sound cell and organisms, an induction of PCD in pathogens penetrating in macroorganism, a change of persister cell of pathogens into active state, suppression of density effects in microbial populations (quorum sensing) are important trends in microbial physiology and biotechnology of medical and prophylactic preparations.

About the Author

V. D. Samuilov
Lomosov Moscow State University
Russian Federation
Department of Microorganisms Physiology


References

1. Льюис К. 2005. Персистирующие клетки и загадка выживания биопленок // Биохимия. 70. 327—336.

2. Оловников А. М. 1971. Принцип маргинотомии в матричном синтезе полинуклеотидов // Докл. АН СССР. 201. 1496—1498.

3. Оловников А. М. 1992. Старение есть результат укорочения “дифферотены” в теломере из-за концевой недорепарации ДНК // Изв. РАН. Сер. биол. № 4. 641—643.

4. Проскуряков С. Я., Габай В. Л., Коноплянников А. Г. 2002. Некроз — активная, управляемая форма программируемой клеточной гибели // Биохимия. 67. 467—491.

5. Самуилов В. Д. 2005. Проблемы энергетики в эволюции живого // Биохимия. 70. 302—307.

6. Самуилов В. Д., Олескин А. В., Лагунова Е. В. 2000. Программируемая клеточная смерть // Биохимия. 65. 1029—1046.

7. Еkerlund T., Nordstrцm K., Bernander R. 1995. Analysis of all size and DNA content in exponentially growing and stationary-phase bath cultures of Escherichia coli // J. Bacteriol. 177. 6791—6797.

8. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S. 2004. Bacterial persistence as a phenotypie switch // Science. 305. 1622—1625.

9. Bassler B. L., Losick R. 2006. Bacterially speaking // Cell. 125. 237—246.

10. Bendich A. J. 2004. Circular chloroplast chromosomes: the grand illusion // Plant Cell. 16. 1661—1666.

11. Costerton J. W., Stewart P. S., Greenberg E. P. 1999. Bacterial biofilms: a common cause of persistent infections // Science. 284. 1318—1322.

12. Eichler J., Adams M. W. W. 2005. Posttranslational protein modification in Archae // Microbiol. Molec. Biol. Revs. 69. 393—425.

13. Festjens N., Vanden Berghe T., Vandenabeele P. 2006. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response // Biochim. Biophys. Acta. 1757. 1371—1387.

14. Guimarгes C. A., Linden R. 2004. Programmed cell death. Apoptosis and alternative deathstyles // Eur. J. Biochem. 271. 1638—1650.

15. Hinnebusch B. J., Bendich A. J. 1997. The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia // J. Bacteriol. 179. 2228—2237.

16. Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K. 2004. Persister cells and tolerance to antimicrobials // FEMS Microbiol. Lett. 230. 13—18.

17. Lewis K. 2000. Programmed death in bacteria // Microbiol. Mol. Biol. Revs. 64. 503—514.

18. Ribbe M., Gadkari D., Meyer O. 1997. N2 Fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide production from O2 by a molybdenum-CO dehydrogenase // J. Biol. Chem. 272. 26627—26633.

19. Vandenabeele P., Vanden Berghe T., Festjens N. 2006. Caspase inhibitors promote alternative cell death pathways // Sci. STKE. 358. 44.

20. Williamson D. 2002. The curious history of yeast mitochondrial DNA // Nature Revs. Genetics. 3. 1—7.


Review

For citations:


Samuilov V.D. Microbial physiology: problems and prospects. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2008;(1):44-48. (In Russ.)

Views: 292


ISSN 0137-0952 (Print)