INTERPRETATION OF DATA ABOUT THE IMPACT OF BIOLOGICALLY ACTIVE COMPOUNDS ON VIABILITY OF CULTURED CELLS OF VARIOUS ORIGIN FROM A GERONTOLOGICAL POINT OF VIEW
Abstract
Problems related to the interpretation of data obtained during testing of potential geroprotectors in cytogerontological experiments are considered. It is emphasized that such compounds/physical factors should influence on the processes leading to the age-related increase of death probability of multicellular organisms (primarily — of man, in whose aging gerontologists are mainly interested). However, in the authors’ opinion, compounds which cure age-related diseases unlikely could be classified as geroprotectors. It is noted, that, in the model systems using cultured cells, researchers, as a rule, evaluate their viability criteria of which, to a great extent, depend on the aging theory shared by the experimenters. Besides, it is very important what cells are used in the studies — normal or transformed cells of multicellular organisms, unicellular eukaryotic or prokaryotic organisms, etc. In particular, biologically active compounds which decrease the viability of cultured cancer cells may increase the life span of experimental animals and humans, as well as compounds which increase the viability of normal cultured cells. Various problems with interpretation of data obtained with the Hayflick model, the stationary phase aging model, and the cell kinetics model, as well as in experiments on evaluation of cell colony-forming efficiency are analyzed. The approaches discussed are illustrated on the example of the results from gerontological investigations of a famous mTOR inhibitor, rapamycin. It is assumed that factors retarding the stationary phase aging (chronological aging) of cultured cells are, apparently, the most promising geroprotectors although the specific mechanisms of their action may vary considerably.
About the Authors
G. V. MorgunovaRussian Federation
A. A. Klebanov
Russian Federation
A. N. Khokhlov
Russian Federation
References
1. Khokhlov A.N., Morgunova G.V. On the constructing of survival curves for cultured cells in cytogerontological experiments: a brief note with three hierarchy diagrams // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 2. P. 67–71.
2. Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10–14.
3. Vilenchik M.M., Khokhlov A.N., Grinberg K.N. Study of spontaneous DNA lesions and DNA repair in human diploid fibroblasts aged in vitro and in vivo // Studia biophysica. 1981. Vol. 85. N 1. P. 53–54.
4. Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475–476.
5. Akimov S.S., Khokhlov A.N. Study of “stationary phase aging” of cultured cells under various types of proliferation restriction // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 520.
6. Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.
7. Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14–20.
8. Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859–864.
9. Khokhlov A.N., Wei L., Li Y., He J. Teaching cytogerontology in Russia and China // Adv. Gerontol. 2012. Vol. 25. N 3. P. 513–516.
10. Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703–708.
11. Khokhlov A.N. Decline in regeneration during aging: appropriateness or stochastics? // Russ. J. Dev. Biol. 2013. Vol. 44. N 6. P. 336–341.
12. Khokhlov A.N. On the immortal hydra. Again // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 4. P. 153–157.
13. Hayflick L. Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both // PLoS Genet. 2007. Vol. 3. N 12. e220.
14. Khokhlov A.N. Does aging need an own program or the existing development program is more than enough? // Russ. J. Gen. Chem. 2010. Vol. 80. N 7. P. 1507–1513.
15. Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150–154.
16. Hayflick L. The cell biology of aging // J. Invest. Dermatol. 1979. Vol. 73. N 1. P. 8–14.
17. Hayflick L. Aging under glass // Mutation Research/ DNAging. 1991. Vol. 256. N 2–6. P. 69–80.
18. Cristofalo V.J., Allen R.G., Pignolo R.J., Martin B.G., Beck J.C. Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. N 18. P. 10614–10619.
19. Mikhelson V.M., Gamaley I.A. Telomere shortening is a sole mechanism of aging in mammals // Curr. Aging Sci. 2012. Vol. 5. N 3. P. 203–208.
20. Khokhlov A.N., Prokhorov L.Yu., Ivanov A.S., Archakov A.I. Effects of cholesterol- or 7-ketocholesterolcontaining liposomes on colony-forming ability of cultured cells // FEBS Lett. 1991. Vol. 290. N 1-2. P. 171–172.
21. Есипов Д.С., Горбачева Т.А., Хайруллина Г.А., Клебанов А.А., Нгуен Тхи Нгок Ту, Хохлов А.Н. Изучение накопления 8-оксо-2’-дезоксигуанозина в ДНК при “стационарном старении” культивируемых клеток // Усп. геронтол. 2008. Т. 21. № 3. С. 485–487.
22. Khokhlov A.N. Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models // Russ. J. Dev. Biol. 2003. Vol. 34. N 5. P. 321–326.
23. Khokhlov A. N. The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies // Biomarkers of aging: expression and regulation. Proceeding / Ed. by F. Licastro and C.M. Caldarera. Bologna: CLUEB, 1992. P. 209–216.
24. Nyström T. Aging in bacteria // Curr. Opin. Microbiol. 2002. Vol. 5. N 6. P. 596–601.
25. Aging research in yeast: Subcell. Biochem. Vol. 57 / Eds. M. Breitenbach, S.M. Jazwinski, and P. Laun. Springer Netherlands, 2012. 368 pp.
26. Khokhlov A.N. Which aging in yeast is “true”? // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 11–13.
27. Ушаков В.Л., Гусев М.В., Хохлов А.Н. Имеет ли смысл изучать механизмы старения на сине-зеленых водорослях? Критический обзор, часть 1 // Вестн. Моск. ун-та. Сер. 16. Биология. 1992. № 1. С. 3–15.
28. Хохлов А.Н., Ушаков В.Л., Капитанов А.Б., Наджарян Т.Л. Влияние геропротектора хлоргидрата 2-этил-6-метил-3-оксипиридина на пролиферацию клеток Acholeplasma laidlawii // Докл. АН СССР. 1984. Т. 274. № 4. С. 930–933.
29. Kapitanov A.B., Aksenov M.Y. Ageing of procaryotes. Acholeplasma laidlawii as an object for cell ageing studies: a brief note // Mech. Ageing Dev. 1990. Vol. 54. N 3. P. 249–258.
30. Powers R.W. III, Kaeberlein M., Caldwell S.D., Kennedy B.K., Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling // Genes Dev. 2006. Vol. 20. N 2. P. 174–184.
31. Alvers A.L., Wood M.S., Hu D., Kaywell A.C., Dunn W.A. Jr., Aris J.P. Autophagy is required for extension of yeast chronological life span by rapamycin // Autophagy. 2009. Vol. 5. N 6. P. 847–849.
32. Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice // Nature. 2009. Vol. 460. N 7253. P. 392–395.
33. Miller R.A., Harrison D.E., Astle C.M. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction // Aging Cell. 2014. Vol. 13. N 3. P. 468–477.
34. Bjedov I., Toivonen J.M., Kerr F., Slack C., Jacobson J., Foley A., Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster // Cell Metab. 2010. Vol. 11. N 1. P. 35–46.
35. Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging // Cell. 2011. Vol. 146. N 5. P. 682–695.
36. Blagosklonny M.V. Aging and immortality: quasiprogrammed senescence and its pharmacologic inhibition // Cell Cycle. 2006. Vol. 5. N 18. P. 2087–2102.
37. Neff F., Flores-Dominguez D., Ryan D.P. et al. Rapamycin extends murine lifespan but has limited effects on aging // J. Clin. Invest. 2013. Vol. 123. N 8. P. 3272–3291.
38. Alayev A., Berger S.M., Kramer M.Y., Schwartz N.S., Holz M.K. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells // J. Cell Biochem. 2015. Vol. 116. N 3. P. 450–457.
Review
For citations:
Morgunova G.V., Klebanov A.A., Khokhlov A.N. INTERPRETATION OF DATA ABOUT THE IMPACT OF BIOLOGICALLY ACTIVE COMPOUNDS ON VIABILITY OF CULTURED CELLS OF VARIOUS ORIGIN FROM A GERONTOLOGICAL POINT OF VIEW. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(2):3-7. (In Russ.)