HYDROXYL RADICAL FOOTPRINTING OF FLUORESCENT-LABELED DNA
Abstract
Footprinting is one of the simplest and most accurate approaches to investigate structure and interaction of biopolymers. It is based on the accessibility of intra- and intermolecular contacts for external damaging agents. In the method, one end of the polymer is labeled, and then the sample is incubated in cutting medium. Length distribution of the products allows to reveal the accessibility of different regions of polymer in the corresponding conditions. In DNA footprinting various enzymes and chemical reagents can be used. The highest temporal and spatial resolution without sequence specificity can be obtained with hydroxyl radicals. In this paper we present a new modification of the experimental approach using fluorescent-labeled DNA fragments and up-to-date methods of quantitative analysis, which can considerably increase its applicability.
About the Authors
N. S. GerasimovaRussian Federation
V. M. Studitsky
Russian Federation
References
1. Sclavi B. Time-resolved footprinting for the study of the structural dynamics of DNA-protein interactions // Biochem. Soc. Trans. 2008. Vol. 36. N 4. P. 745–748.
2. Brenowitz M., Senear D.F., Shea M.A., Ackers G.K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions // Meth. Enzymol. 1986. Vol. 130. P. 132–181.
3. Shcherbakova I., Mitra S., Beer R.H., Brenowitz M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins // Nucleic Acids Res. 2006. Vol. 34. N 6. e48.
4. Fenton H.J.H. Oxidation of tartaric acid in the presence of iron // J. Chem. Soc. 1894. Vol. 65. P. 899–910.
5. Haber F., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts // Proc. R. Soc. Lond. A. 1934. Vol. 147. N 861. P. 332–351.
6. Tullius T.D., Dombroski B.A. Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to λ repressor and Cro protein // Proc. Natl. Acad. Sci. USA. 1986. Vol. 83. N 15. P. 5469–5473.
7. Jain S.S., Tullius T.D. Footprinting protein-DNA complexes using the hydroxyl radical // Nat. Protoc. 2008. Vol. 3. N 6. P. 1092–1100.
8. Woger J.W., Koraimann G. Hydroxyl radical footprinting using PCR-generated fluorescent-labelled DNA fragments and the ALFexpres DNA sequencer // Tech. Tips Online. 1997. Vol. 2. N 1. P. 167–168.
9. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.
10. Noll M. Internal structure of the chromatin subunit // Nucleic Acids Res. 1974. Vol. 1. N 11. P. 1573–1578.
11. Wigler M.H., Axel R. Nucleosomes in metaphase chromosomes // Nucleic Acids Res. 1976. Vol. 3. N 6. Р. 1463–1471.
12. Hayes J.J., Tullius T.D., Wolffe A.P. The structure of DNA in a nucleosome // Proc. Natl. Acad. Sci. USA. 1990. Vol. 87. N 19. P. 7405–7409.
13. Lowary P.T., Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning // J. Mol. Biol. 1998. Vol. 276. N 1. P. 19–42.
14. Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Methods Mol. Biol. 2009. Vol. 523. P. 109–123.
15. Armeev G.A., Gorkovets T.K., Efimova D.A., Shaitan K.V., Shaytan A.K. Modeling of potein – DNA complexes geometry utilising FRET and footprinting data // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 71. N 1. P. 29–33.
Review
For citations:
Gerasimova N.S., Studitsky V.M. HYDROXYL RADICAL FOOTPRINTING OF FLUORESCENT-LABELED DNA. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(2):32-36. (In Russ.)