Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

БИОБЕЗОПАСНОСТЬ ВИРУСОВ РАСТЕНИЙ ДЛЯ ЧЕЛОВЕКА И ЖИВОТНЫХ

Полный текст:

Аннотация

В последнее время вирионы и вирусоподобные частицы (ВПЧ) вирусов растений рассматриваются в качестве основы для создания новых биотехнологий в медицине и ветеринарии, в том числе для получения современных безопасных вакцин, систем адресной доставки и новых диагностических препаратов, а также для продукции терапевтических белков в растениях. Несмотря на то, что вирусы растений не могут размножаться в организме позвоночных, существуют данные, что они способны воспроизводить тот или иной этап инфекционного цикла в клетках млекопитающих. Более того, показано, что фитовирусы могут постоянно присутствовать в организме животных и человека, и могут использовать его в качестве переносчика. В обзоре представлены результаты по биосовместимости, токсичности, тератогенности и биораспределению вирусов растений. Основываясь на последних данных, можно утверждать, что фитовирусы безопасны для животных и человека. Показано, что вирионы биодеградируемы и легко выводятся из
организма лабораторных животных. При этом вирионы и ВПЧ вирусов растений высокоиммуногенны и, при презентации антигенных детерминант патогенов человека и животных на их поверхности, позволяют смоделировать безопасную вирусную частицу,
способную заменить живые аттенуированные вакцины.

Об авторах

Н. А. Никитин
Московский государственный университет имени М.В. Ломоносова
Россия

канд. биол. наук, зав. сектором прикладной фитовирусологии кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



Е. А. Трифонова
Московский государственный университет имени М.В. Ломоносова
Россия

канд. биол. наук, ст. науч. сотр. кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



О. В. Карпова
Московский государственный университет имени М.В. Ломоносова
Россия

докт. биол. наук, проф. кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



И. Г. Атабеков
Московский государственный университет имени М.В. Ломоносова
Россия

докт. биол. наук, проф., зав. кафедрой вирусологии биологического факультета МГУ. Тел.: 8-495-939-55-34



Список литературы

1. Colson P., Richet H., Desnues C., Balique F., Moal V., Grob J.J., Berbis P., Lecoq H., Harle J.R., Berland Y., Raoult D. Pepper mild mottle virus, a plant virus associated with specific immune responses, Fever, abdominal pains, and pruritus in humans // PLoS One. 2010. Vol. 5. N 4. e10041.

2. Balique F., Colson P., Raoult D. Tobacco mosaic virus in cigarettes and saliva of smokers // J. Clin. Virol. 2012. Vol. 55. N. 4. P. 374–376.

3. Koudelka K.J., Destito G., Plummer E.M., Trauger S.A., Siuzdak G., Manchester M. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin // PLoS Pathogens. 2009. Vol. 5. N 5. e1000417.

4. Li L., Wang L., Xiao R., Zhu G., Li Y., Liu C., Yang R., Tang Z., Li J., Huang W., Chen L., Zheng X., He Y., Tan J. The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells // Biosci. Rep. 2012. Vol. 32. N 2. P. 171–186.

5. Medeiros R.B., Resende Rde O., de Avila A.C. The plant virus Tomato Spotted Wilt Tospovirus activates the immune system of its main insect vector, Frankliniella occidentalis//J. Virol. 2004. Vol. 78. N 10. P. 4976–4982.

6. Stafford C.A., Walker G.P., Ullman D.E. Infection with a plant virus modifies vector feeding behavior // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108. N 23. P. 9350–9355.

7. Zhang T., Breitbart M., Lee W.H., Run J.Q., Wei C.L., Soh S.W., Hibberd M.L., Liu E.T., Rohwer F., Ruan Y. RNA viral community in human feces: prevalence of plant pathogenic viruses // PLoS Biol. 2006. Vol. 4. N 1. e3.

8. Blandino A., Lico C., Baschieri S., Barberini L., Cirotto C., Blasi P., Santi L. In vitro and in vivo toxicity evaluation of plant virus nanocarriers // Colloids Surf. B. Biointerfaces. 2015. Vol. 129. P. 130–136.

9. Lee K.L., Twyman R.M., Fiering S., Steinmetz N.F. Virus-based nanoparticles as platform technologies for modern vaccines // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016. DOI: 10.1002/wnan.1383.

10. Brunel F.M., Lewis J.D., Destito G,. Steinmetz N.F., Manchester M., Stuhlmann H., Dawson P.E. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting // Nano Lett. 2010. Vol. 10. N 3. P. 1093-1097.

11. Steinmetz N.F., Ablack A.L., Hickey J.L., Ablack J., Manocha B., Mymryk J.S., Luyt L.G., Lewis J.D. Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors // Small. 2011. Vol. 7. N 12. P. 1664–1672.

12. Rioux G., Mathieu C., Russell A., Bolduc M., Laliberté-Gagné M.E., Savard P., Leclerc D. PapMV nanoparticles improve mucosal immune responses to the trivalent inactivated flu vaccine // J. Nanobiotechnology. 2014. Vol. 12. N 1. P. 19.

13. Caspar D. L. Assembly and stability of the tobacco mosaic virus particle // Adv. Protein. Chem. 1963. Vol. 18. P. 37–121.

14. Folwarczna J., Moravec T., Plchova H., Hoffmeisterova H., Cerovska N. Efficient expression of Human papillomavirus 16 E7 oncoprotein fused to Cterminus of Tobacco mosaic virus (TMV) coat protein using molecular chaperones in Escherichia coli // Protein Expr. Purif. 2012. Vol. 85. N 1. P. 152-157.

15. Karpova O., Nikitin N., Chirkov S., Trifonova E., Sheveleva A., Lazareva E. Atabekov J. Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platforms and foreign antigens // J. Gen. Virol. 2012. Vol. 93. N 2. P. 400–407.

16. Pascual D.W. Vaccines are for dinner // Proc. Natl. Acad .Sci. USA. 2007. Vol. 104. N 26. P. 10757–10758.

17. Nochi T., Takagi H., Yuki Y., Yang L., Masumura T., Mejima M., Nakanishi U., Matsumura A., Uozumi A., Hiroi T., Morita S., Tanaka K., Takaiwa F., Kiyono H. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104. N 26. P. 10986–10991.

18. Karasev A.V., Foulke S., Wellens C., Rich A., Shon K.J., Zwierzynski I., Hone D., Koprowski H., Reitz M. Plant based HIV-1 vaccine candidate: Tat protein produced in spinach //Vaccine. 2005. Vol. 23. N 15. P. 1875– 1880.

19. McCormick A.A., Corbo T.A., Wykoff-Clary S., Palmer K.E., Pogue G.P. Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection // Bioconjug. Chem. 2006. Vol. 17. N 5. P. 1330–1338.

20. Staczek J., Bendahmane M., Gilleland L.B., Beachy R.N., Gilleland H.E. Jr Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa // Vaccine. 2000. Vol. 18. N 21. P. 2266–2274.

21. Fujiyama K., Saejung W., Yanagihara I., Nakado J., Misaki R., Honda T., Watanabe Y., Seki T. In Planta production of immunogenic poliovirus peptide using tobacco mosaic virus-based vector system // J. Biosci. Bioeng. 2006. Vol. 101. N 5. P. 398–402.

22. Yin Z., Nguyen H.G., Chowdhury S., Bentley P., Bruckman M.A., Miermont A., Gildersleeve J.C., Wang Q., Huang X. Tobacco mosaic virus as a new carrier for tumor associated carbohydrate antigens // Bioconjug. Chem. 2012. Vol. 23. N 8. P. 1694–1703.

23. Bruckman M., Randolph L., VanMeter A., Hern S., Shoffstall A., Taurog R., Steinmetz N.F. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice // Virology. 2014. Vol. 449. P. 163-173.

24. Niehl A., Appaix F., Boscá S., van der Sanden B., Nicoud J.F., Bolze F., Heinlein M. Fluorescent Tobacco mosaic virus-derived bio-nanoparticles for intravital two-photon imaging // Front. Plant Sci. 2016. Vol. 6. P. 1244.

25. Wahyuni W.S., Hanapi M., Hartana I. The Presence of tobacco mosaic virus in the compost extract of Cigar Tobacco Debris // HAYATI J. Biosci. 2008. Vol. 15. N 3. P. 118–122.

26. Wetter C. Tobacco mosaic virus and para-tobacco mosaic virus in cigarettes // Naturwissenschaften. 1975. Vol. 62. N 11. P. 533.

27. Bothwell P.W. Lung cancer and tobacco mosaic virus // Lancet. 1960. Vol. 275. N 7125. P. 657–658.

28. Iftikhar Y., Jackson R., Neuman B.W. Detection of tobacco mosaic tobamovirus in cigarettes through RT-PCR //Pak. J. Agri. Sci. 2015. Vol. 52. N 3. P. 667–670.

29. Nakamura S., Yang C.S., Sakon N., Ueda M., Tougan T., Samashita A., Goto N., Takahashi K., Yasunaga T., Ikuta K., Mizutani T., Okamoto Y., Tagami M., Morita R., Maeda N., Kawai J., Hayashizaki Y., Nagai Y., Horii T., Iida T., Nakaya T. Direct Hetagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach // PLoS ONE 2009. Vol. 4. N 1. e4219.

30. Hymowitz N. Smoking and cancer: a review of public health and clinical implications // J. Natl. Med. Assoc. 2011. Vol. 103. N 8. P. 695–700.

31. Anthonisen N.R., Connett J.E., Kiley J.P., Altose M.D., Bailey W.C., et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study // J. Am. Med. Assoc. 1994. Vol. 272. N 19. P. 1497–1505.

32. Powers K.M., Kay D.M., Factor S.A., Zabetian C.P., Higgins D.S., Samii A., Nutt J.G., Griffith A., Leis B., Roberts J.W., Martinez E.D., Montimurro J.S., Checkoway H., Payami H. Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk // Mov. Disord. 2008. Vol. 23. N 1. P. 88–95.

33. Liu R., Vaishnav R.A., Roberts A.M., Friedland R.P. Humans have antibodies against a plant virus: evidence from Tobacco Mosaic Virus // PLoS ONE. 2013. Vol. 8. N 4. e60621.

34. Erickson J.O., Armen D.M., Libby R.L. The persistence of antigen in the mouse // J. Immunol. 1953. Vol. 71. P. 30–37.

35. Erickson J.O., Hensley T.J., Fields M., Libby R.L. Intracellular localization of tobacco mosaic virus in mouse liver // J. Immunol. 1957. Vol. 78. N 2. P. 95–103.

36. Bousbia S., Papazian L., La Scola B., Raoult D. Detection of plant DNA in the bronchoalveolar lavage of patients with ventilator-associated pneumonia // PLoS ONE. 2010. Vol. 5. N 6. e11298.

37. Le Clair R.A. Recovery of culturable tobacco mosaic virus from sputum and thoracentesis fluids obtained from cigarette smokers with a history of pulmonary disease // Am. Rev. Respir. Dis. 1967. Vol. 95. N 3. P. 510–511.

38. Katsilambros L. Tobacco mosaic virus and lung cancer //Lancet. 1960. Vol. 2. P. 934.

39. Knowland J. Protein synthesis directed by the RNA from a plant virus in a normal animal cell // Genetics. 1974. Vol. 78. N 1. P. 383–394.

40. Salomon R. Bar-Joseph M. Translational competition between related virus RNA species in cell-free systems // J. Gen. Virol. 1982. Vol. 62. N 2. P. 343–347.

41. Karpova O., Ivanov K., Rodionova N., Dorokhov Yu., Atabekov J. Nontranslatability and dissimilar behavior in plants and protoplasts of viral RNA and movement protein complexes formed in vitro // Virology. 1997. Vol. 230. N 1. P. 11–21.

42. Dimitriadis G.J., Georgatsos J.G. Synthesis of tobacco mosaic virus coat protein following migration of viral RNA into isolated mouse liver mitochondria // Nucleic Acids Res. 1975. Vol. 2. N 10. P. 1719–1726.

43. Balique F., Colson P., Barry A.O., Nappez C., Ferretti A., Poussawi K. A., Ngounga T., Lepidi H., Ghigo E., Mege J., Lecoq H., Raoult D. Tobacco Mosaic Virus in the Lungs of Mice following Intra-Tracheal Inoculation // PLoS ONE. 2013. Vol. 8. N 1. e54993.

44. Atabekov J., Nikitin N., Arkhipenko M., Chirkov S., Karpova O. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles // J. Gen. Virol. 2011. Vol. 92. N 2. P. 453–456.

45. Nikitin N., Malinin A., Rakhnyanskaya A., Trifonova E., Karpova O., Yaroslavov A., Atabekov J. Use of a polycation spacer for noncovalent immobilization of albumin on thermally modified virus particles // Polym. Sci. Ser. A. 2011. Vol. 53. N 11. P. 1026–1031.

46. Atabekov J., Dobrov E., Karpova O., Rodionova N. Potato virus X: structure, disassembly and reconstitution //Mol. Plant Pathol. 2007. Vol. 8. N 5. P. 667–675.

47. Marusic C., Rizza P., Lattanzi L., Mancini C., Spada M., Belardelli F., Benvenuto E, Capone I. Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1 // J. Virol. 2001. Vol. 75. N 18. P. 8434–8439.

48. Shukla S., Wen A.M., Commandeur U., Steinmetz N.F. Presentation of HER2 epitopes using a filamentous plant virusbased vaccination platform // J. Mater. Chem. B. 2014. Vol. 2. P. 6249–6258.

49. Lico C., Mancini C., Italiani P., Betti C., Boraschi D., Benvenuto E., Baschieri S. Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice // Vaccine. 2009. Vol. 27. N 37. P. 5069–5076.

50. Lico C., Benvenuto E., Baschieri S. The two-faced Potato Virus X: from plant pathogen to smart nanoparticle // Front. Plant Sci. 2015. Vol. 6. P. 1009.

51. Jobsri J., Allen A., Rajagopal D., Shipton M., Kanyuka K., Lomonossoff G.P., Ottensmeier C., Diebold S.S., Stevenson F.K., Savelyeva N. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody // PLoS One. 2015. Vol. 10. N 2. e0118096.

52. Steinmetz N.F., Mertens M.E., Taurog R.E., Johnson J.E., Commandeur U., Fischer R., Manchester M. Potato virus X as a novel platform for biomedical applications // Nano Lett. 2010. Vol. 10. N 1. P. 305–312.

53. Esfandiari N., Arzanani M.K., Soleimani M., Kohi-Habibi M., Svendsen W.E. A new application of plant virus nanoparticles as drug delivery in breast cancer // Tumour. Biol. 2015. DOI:10.1007/s13277-015-3867-3. Steinmetz N.F. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X //Mol. Pharm. 2013. Vol. 10. N 1. P. 33–42.

54. Lebel M.È., Chartrand K., Leclerc D., Lamarre A. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel). 2015. Vol. 3. N 3. P. 620–637.

55. Tollin P., Bancroft J.B., Richardson J.F., Payne N.C., Beveridge T.J. Diffraction studies of papaya mosaic virus //Virology. 1979. Vol. 98. N 1. P. 108–115.

56. Sit T.L., Abouhaidar M.G., Holy S. Nucleotide sequence of papaya mosaic virus RNA // J. Gen. Virol. 1989. Vol. 70. N 9. P. 2325–2331.

57. Zhang H., Todderud E., Stubbs G. Crystallization and preliminary X-ray analysis of papaya mosaic virus coat protein // J. Mol. Biol. 1993. Vol. 234. N 3. P. 885–887.

58. Denis J., Acosta-Ramirez E., Zhao Y., Hamelin M.E., Koukavica I., Baz M., Abed Y., Savard C., Pare C., Lopez Macias C., Boivin G., Leclerc D. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform // Vaccine. 2008. Vol. 26. N 27-28. P. 3395–3403.

59. Savard C., Guerin A., Drouin K., Bolduc M., Laliberte-Gagne M.E,. Dumas M.C., Majeau N., Leclerc D. Improvement of the trivalent inactivated flu vaccine using PapMV nanoparticles // PLoS One. 2011. Vol. 6. N 6. e21522.

60. Douglas T., Young M. Host-guest encapsulation of materials by assembled virus protein cages // Nature. 1998. Vol. 393. P. 152–158.

61. Gillitzer E., Willits D., Young M., Douglas T. Chemical modification of a viral cage for multivalent presentation // Chem. Commun. (Camb.). 2002. Vol. 21. P. 2390–2391.

62. Brumfield S., Willits D., Tang L., Johnson J.E., Douglas T., Young M. Heterologous expression of modified Cowpea chlorotic mottle bromovirus coat protein results in the assembly of protein cages with altered architectures and function // J. Gen. Virol. 2004. Vol. 85. N 4. P. 1049–1053.

63. Hassani-Mehraban A., Creutzburg S., van Heereveld L., Kormelink R. Feasibility of Cowpea chlorotic mottle viruslike particles as scaffold for epitope presentations // BMC Biotechnol. 2015. Vol. 15. P. 80.

64. Destito G., Yeh R., Rae C.S., Finn M.G., Manchester M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells // Chem. Biol. 2007. Vol. 14. N 10. 1152–1162.

65. Lewis J.D., Destito G., Zijlstra A., Gonzalez M.J., Quigley J.P., Manchester M., Stuhlmann H. Viral nanoparti cles as tools for intravital vascular imaging // Nat. Med. 2006. Vol. 12. N 3. P. 354–360.

66. McLain L., Durrani Z., Wisniewski L.A., Porta C., Lomonossoff G.P., Dimmock N.J. Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22 amino acid peptide of gp41 expressed on the surface of a plant virus // Vaccine. 1996. Vol. 14. N 8. P. 799–810.

67. Singh P., Prasuhn D., Yeh R.M., Destito G., Rae C.S., Osborn K., Finn M.G., Manchester M. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo // J. Control Release. 2007. Vol. 120. N 1–2. P. 41–50.

68. Lin T., Chen Z., Usha R., Stauffacher C., Dai J., Schmidt T., Johnson J. The refined crystal structure of cowpea mosaic virus at 2.8 A resolution // Virology. 1999. Vol. 265. N 1. P. 20–34.

69. Lomonossoff G., Johnson J. The synthesis and structure of comovirus capsids // Prog. Biophys. Mol. Biol. 1991. Vol. 55. N 2. P. 107–137.

70. Wang Q., Kaltgrad E., Lin T., Johnson J., Finn M. Natural supramolecular building blocks: wild-type cowpea mosaic virus // Chem. Biol. 2002. Vol. 9. N 7. P. 805–811.

71. Rae C.S., Khor I.W., Wang Q., Destito G., Gonzalez M.J., Singh P., Thomas D.M., Estrada M.N., Powell E., Finn M.G., Manchester M. Systemic trafficking of plant virus nanoparticles in mice via the oral route // Virology. 2005. Vol. 343. N 2. P. 224–235.

72. Kaiser C.R., Flenniken M.L., Gillitzer E., Harmsen A.L., Harmsen A.G., Jutila M.A., Douglas T., Young M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo // Int. J. Nanomed. 2007. Vol. 2. N 4. P. 715–733.


Для цитирования:


Никитин Н.А., Трифонова Е.А., Карпова О.В., Атабеков И.Г. БИОБЕЗОПАСНОСТЬ ВИРУСОВ РАСТЕНИЙ ДЛЯ ЧЕЛОВЕКА И ЖИВОТНЫХ. Вестник Московского университета. Серия 16. Биология. 2016;(3):20-26.

For citation:


Nikitin N.A., Trifonova E.A., Karpova O.V., Atabekov J.G. BIOSAFETY OF PLANT VIRUSES FOR HUMAN AND ANIMAL. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(3):20-26. (In Russ.)

Просмотров: 140


ISSN 0137-0952 (Print)