NUCLEOSOME STRUCTURE RELAXATION DURING DNA UNWRAPPING: MOLECULAR DYNAMICS SIMULATIONS STUDY
Abstract
In this paper we consider the effects of relaxation of the nucleosome local structure after DNA unwrapping from the histone octamer. We study the role of the charge distribution in histones
during DNA rewrapping. We employ molecular dynamics simulations to show that ionic environment rapidly stabilizes during the relaxation of the system. In the case of simulations with preliminary relaxation of solvent and non-backbone atoms for a short period of time, a rapid irreversible restoration of the structure similar to crystal was observed. Rewrapping of DNA did not occur in case when the solvent was allowed to relax for a longer time period, despite no apparent differences in the ionic environment of DNA. The change of the quadrupole moment during relaxation of the system was shown.
About the Authors
G. A. ArmeevRussian Federation
K. V. Shaitan
Russian Federation
A. K. Shaytan
Russian Federation
References
1. Kornberg R.D. Chromatin structure: a repeating unit of histones and DNA // Science. 1974. Vol. 184. N 4139. P. 868–871.
2. Shaytan A.K., Armeev G.A., Goncearenco A., Zhurkin V.B., Landsman D., Panchenko A.R. Coupling between histone conformations and DNA geometry in nucleosomes on a microsecond timescale: atomistic insights into nucleosome functions // J. Mol. Biol. 2015.
3. Richmond T.J., Davey C.A. The structure of DNA in the nucleosome core // Nature. 2003. Vol. 423. N 6936. P. 145–150.
4. Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution // J. Mol. Biol. 2002. Vol. 319. N 5. P. 1097–1113.
5. Lu X.-J., Olson W.K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures // Nat. Protoc. 2008. Vol. 3. N 7. P. 1213–1227.
6. Phillips J.C., Zheng G., Kumar S., Kale L.V. NAMD: Biomolecular simulation on thousands of processors // Supercomputing, ACM/IEEE 2002 Conference, 2002. P. 36–36.
7. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics // J. Mol. Graph. 1996. Vol. 14. N 1. P. 33–38, 27–28.
8. Li G., Levitus M., Bustamante C., Widom J. Rapid spontaneous accessibility of nucleosomal DNA // Nat. Struct. Mol. Biol. 2005. Vol. 12. N 1. P. 46–53.
9. Polach K.J., Widom J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation // J. Mol. Biol. 1995. Vol. 254. N 2. P. 130–149.
10. Mirny L.A. Nucleosome-mediated cooperativity between transcription factors // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. N 52. P. 22534–22539.
11. Materese C.K., Savelyev A., Papoian G.A. Counterion atmosphere and hydration patterns near a nucleosome core particle // J. Am. Chem. Soc. 2009. Vol. 131. N 41. P. 15005–15013.
12. Manning G.S. Is a small number of charge neutralizations sufficient to bend nucleosome core DNA onto its superhelical ramp? // J. Am. Chem. Soc. 2003. Vol. 125. N 49. P. 15087–15092.
13. Chua E.Y.D., Vasudevan D., Davey G.E., Wu B., Davey C.A. The mechanics behind DNA sequence-dependent properties of the nucleosome // Nucleic Acids Res. 2012. Vol. 40. N 13. P. 6338–6352.
14. Flaus A., Rencurel C., Ferreira H., Wiechens N., Owen-Hughes T. SIN mutations alter inherent nucleosome mobility //EMBO J. 2004. Vol. 23. N 2. P. 343–353.
Review
For citations:
Armeev G.A., Shaitan K.V., Shaytan A.K. NUCLEOSOME STRUCTURE RELAXATION DURING DNA UNWRAPPING: MOLECULAR DYNAMICS SIMULATIONS STUDY. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(3):34-37. (In Russ.)