THE PROBLEM OF CHOICE OF OPTIMUM REFERENT FOR EEG REGISTRATION
Abstract
The problem to find the optimal EEG reference is the actual topic for discussion for over 60 years. In this work we studied topographical distinctions of averaged spectral amplitudes in alpha domain in 10-20%-system destinations at “closed eyes” test for 13 references: top and bottom of chin (P1, P2), tip of nose (N), top and bottom behind of neck (Sh1, Sh2), top of back (C), united front and back of neck (2Sh), united, ipsilateral and separate ears (A12, Sym, A1, A2), vertex (Cz), averaged reference (AR). Six experiments have been performed for 10 examineers with grounded and ungrounded conditions of three distant basic references P2, C, 2Sh. Pairwise estimates of topographic consistency 13 references were carried out using the proposed complex of three independent indicators and assessment criterion followed by K-means classification of reference schemes and its discriminant verification. The main results are: 1) the highly coherent topography is provided by references: А12, P1, P2, Sym; 2) A1, Sh2, A2, Sh1, AR, Cz references are characterized by considerably less coordinated and various topography that can lead to contradictory conclusions obtained by their use; 3) we didn’t find significant reasons to prefer the grounded (neutral) or ungrounded condition of basic references, that reduces the relevance of problem to search or calculate an infinitely far neutral reference. So the problem to search or mathematical construct an infinitely remote neutral reference may be no really actual.
About the Author
A. P. KulaichevRussian Federation
Department of Higher Nervous Activity, School of Biology
References
1. Nunez P.L. Electric fields of the brain: the neurophysics of EEG. NY.: Oxford Univ. Press, 1981. 640 p.
2. Teplan M. Fundamentals of EEG mesurement // Meas. Sci. Rev. 2002. Vol. 2, Sect. 2. P. 1–11.
3. Schiff S.J. Dangerous phase // Neuroinformatics. 2006. Vol. 3. N 4. P. 315–318.
4. Stephenson W.A., Gibbs, F.A. A balanced non-cephalic reference electrode // Electroenceph. Clin. Neurophysiol. 1951. N 3. P. 237-240.
5. Wolpaw J.R, Wood C.C. Scalp distribution of human auditory evoked potentials. Evaluation of reference electrodesites // Electroenceph. Clin. Neurophysiol. 1982. Vol. 54. N 1. P. 15–24.
6. Hu S., Cao Y., Chen S., Kong W., Zhang J., Li X., Zhang Y. Independence verification for reference signal under neck of human body in EEG recordings // Proceedings of the 31-th Chinese Control Conference, Hefei (July 25-27, 2012). 2012. P. 4038-4042.
7. Geselowitz D.B. The zero of potential // IEEE Eng. Med. Biol. Mag. 1998. Vol. 17. N 1. P. 128–132.
8. Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity // Physiol. Meas. 2001. Vol. 22. N 4. P. 693–711.
9. Madhu N., Ranta R., Maillard L., Koessler L.A. Unified treatment of the reference estimation problem in depth EEG recordings // Med. Biol. Eng. Comput. 2012. Vol. 50. N 10. P. 1003–1015.
10. Hu S., Cao Y., Chen S., Zhang J., Kong W., Yang K., et al. A comparative study of two reference estimation methods in EEG recording // Proc. Brain. Inspir. Cogn. Syst. 2012. P. 321–328.
11. Hjorth B. An on-line transformation of EEG scalp potentials into orthogonal source derivations // Electroencep. Clin. Neurophys. 1975. Vol. 39. N 5. P. 526–530.
12. Carvalhaes C.G, Suppes P. A spline framework for estimating the EEG surface Laplacian using the Euclidean metric // Neural. Comput. 2011. Vol. 23. N 11. P. 2974–3000.
13. Lepage K.Q., Kramer M.A., Chu C.J. A statistically robust EEG re-referencing procedure to mitigate reference effect // J. Neurosci. Methods. 2014. Vol. 235. N 30. P. 101–116.
14. Kayser J., Tenke C.E. In search of the Rosetta Stone for scalp EEG: Converging on reference-free techniques //Clin. Neurophysiol. 2010. Vol. 121. N 12. P. 1973–1975.
15. Ng S.C., Raveendran P. Comparison of different montages on to EEG classification // 3rd Kuala Lumpur international conference on biomedical engineering 2006, Biomed 2006, 11–14 December 2006 Kuala Lumpur, Malaysia. Springer Berlin Heidelberg, 2007. P. 365–368.
16. Alhaddad M.J. Common average reference (CAR) improves P300 speller // Int. J. Eng. Technol. 2012. Vol. 2. N 3. P. 451–463.
17. Qin Y, Xu P, Yao D. A comparative study of different references for EEG default mode network: the use of the infinity reference // Clin. Neurophysiol. 2010. Vol. 121. N 12. P. 1981–1991.
18. Wang B., Wang X., Ikeda A., Nagamin T., Shibasaki H., Nakamuraea M. Automatic reference selection for quantitative EEG interpretation: Identification of diffuse/localised activity and the active earlobereference, iterative detection of the distribution of EEG rhythms // Med. Eng. Phys. 2014. Vol. 36. N 1. P. 88– 95.
19. Tenke C.E., Kayser J. Reference-free quantification of EEG spectra: combining current source density (CSD) and frequency principal components analysis (fPCA) // Clin. Neurophysiol. 2005. Vol. 116. N 12. P. 2826–2846.
20. Marzett L., Nolte G., Perrucci M.G., Romani G.L., Del Gratta C. The use of standardized infinity reference in EEG coherency studies // Neuroimage. 2007. Vol. 36. N 1. P. 48–63.
21. Essl M., Rappelsberger P. EEG cohererence and reference signals: experimental results and mathematical explanations //Med. Biol. Eng. Comput. 1998. Vol. 36. N 4. P. 399–406.
22. Hagemann D., Naumann E., Thayer J.F. The quest for the EEG reference revisited: A glance from brain asymmetry research // Psychophysiol. 2001. Vol. 38. N 5. P. 847–857.
Review
For citations:
Kulaichev A.P. THE PROBLEM OF CHOICE OF OPTIMUM REFERENT FOR EEG REGISTRATION. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(3):38-43. (In Russ.)