IMMOBILIZED MICROALGAE IN BIOTECHNOLOGY
Abstract
Here we present a brief review of current data on immobilization of oxygenic phototrophic microorganisms — cyanobacteria and eukaryotic microalgae — in natural and artificial experimental systems. We emphasize that immobilization, e.g. in biofilms, is a basic, widespread in nature strategy ensuring the survival of microorganisms. Accordingly, the artificially immobilized
microalgal cells might be considered as a special group of biomimetic (bioinspired) materials. Special attention is paid to the effect(s) of different immobilization methods on the physiology of microalgal cells and their stress tolerance as well as productivity of microalgal cultures. A comparison of the advantages and drawbacks of different immobilization techniques and cell carriers is presented. The review concludes with outlook on the possibilities of using of the immobilized phototrophic cells in biotechnology. Specific areas include (but not limited to) the biomass and metabolites production and harvesting, removal of heavy metals, biocapture of nutrients from wastewater and destroying of organic pollutants are explored.
About the Authors
S. G. VasilievaRussian Federation
E. S. Lobakova
Russian Federation
А. А. Lukyanov
Russian Federation
А. Е. Solovchenko
Russian Federation
References
1. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. Microbial biofilms // Ann. Rev. Microbiol. 1995. Vol. 49. N 1. P. 711–745.
2. Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metаl removal: A review // Biometals. 2002. Vol. 15. N 4. P. 377–390.
3. Eroglu E., Smith S.M., Raston C.L. Application of various immobilization techniques for algal bioprocesses // Biomass and biofuels from microalgae / Ed. by N.R. Moheimani, M.P. McHenry, K. de Boer, and P. Bahri. Berlin: Springer, 2015. P. 19–44.
4. Звягинцев Д., Добровольская Т., Лысак Л. Растения как центры формирования бактериальных сообществ // Ж. общ. биол. 1993. Т. 54. № 5. P. 183–199.
5. Герасименко Л., Заварзин Г. Реликтовые циано-бактериальные сообщества // Проблемы доантропогенной эволюции биосферы / Под ред. А.Ю. Розанова. М.: Наука, 1993. C. 222–253.
6. Сироткин А.С., Шагинурова Г., Ипполитов К. Агрегация микроорганизмов: флокулы, биопленки, микробные гранулы. Казань: Изд-во Фэн, 2007. 160 с.
7. Романова Ю., Гинцбург А. Бактериальные биопленки как естественная форма существования бактерий в окружающей среде и организме хозяина // Ж. микробиол., эпидемиол. иммунобиол. 2011. Т. 3. С. 99–109.
8. Заварзин Г. Эволюция геосферно-биосферной системы // Природа. 2003. T. 1. C. 27– 35.
9. Branda S.S., Vik A., Friedman L., Kolter R. Biofilms: the matrix revisited // Trends Microbiol. 2005. Vol. 13. N 1. P. 20–26.
10. Wingender J., Neu T., Flemming H. Microbial Extracellular Polymeric Substances: Characterisation, Structure and Function. Berlin: Springer, 1999. 123 p.
11. Trench R. Microalgal-invertebrate symbioses-a review // Endocyt. Cell. Res. 1993. Vol. 9. N 2–3. P. 135–175.
12. Lopez A., Lazaro N., Marques A.M. The interphase technique: a simple method of cell immobilization in gelbeads // J. Microbiol. Methods. 1997. Vol. 30. N 3. P. 231–234.
13. Синицын А., Райнина Е., Лозинский В., Спасов С. Иммобилизованные клетки микроорганизмов. М.: Издательство МГУ, 1994. 288 с.
14. de-Bashan L.E., Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects // Biores. Technol. 2010. Vol. 101. N 6. P. 1611–1627.
15. Hameed M., Ebrahim O. Biotechnological potential uses of immobilized algae // J. Agric. Biol. 2007. N 1. Vol. 9. P. 183–192.
16. Moreno-Garrido I. Microalgae immobilization: current techniques and uses // Biores. Technol. 2008. Vol. 99. N 10. P. 3949–3964.
17. Akhtar N., Iqbal J., Iqbal M. Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies // J. Hazard. Mater. 2004. Vol. 108. N 1. P. 85–94.
18. Travieso L., Benitez F., Weiland P., Sanchez E., Dupeyron R., Dominguez A. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments // Biores. Technol. 1996. Vol. 55. N 3. P. 181–186.
19. Ghosh M., Gaur J. Current velocity and the establishment of stream algal periphyton communities // Aquat. Bot. 1998. Vol. 60. N 1. P. 1–10.
20. Nayar S., Goh B., Chou L., Reddy S. In situ microcosms to study the impact of heavy metals resuspended by dredging on periphyton in a tropical estuary // Aquatic Toxicol. 2003. Vol. 64. N 3. P. 293–306.
21. Danilov R.A., Ekelund N. Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status // J. Microbiol. Methods. 2001. Vol. 45. N 3. P. 167–170.
22. Burdin K., Bird K. Heavy metal accumulation by carrageenan and agar producing algae // Botanica Marina. 1994. Vol. 37. N 5. P. 467–470.
23. Khattar J., Sarma T., Singh D. Removal of chromium ions by agar immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor // Enz. Microbiol Technol. 1999. Vol. 25. N 7. P. 564–568.
24. Schreiter P., Gillor O., Post A., Belkin S., Schmid R., Bachmann T. Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter
25. strain // Biosens. Bioelectron. 2001. Vol. 16. N 9. P. 811–818.
26. Suzuki T., Yamaguchi T., Ishida M. Immobilization of Prototheca zopf in calcium-alginate beads for the degradation of hydrocarbons // Process Biochem. 1998. Vol. 33. N 5. P. 541– 646.
27. Leino H., Kosourov S.N., Saari L., Sivonen K., Tsygankov A.A., Aro E.-M., Allahverdiyeva Y. Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films // Intern. J. Hydrogen Energy. 2012. Vol. 37. N 1. P. 151–161.
28. Mallick N., Rai L. Removal of inorganic ions from wastewaters by immobilized microalgae // World J. Microbiol. Biotechnol. 1994. Vol. 10. N 4. P. 439–443.
29. Lau P., Tam V, Wong Y. Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris // Bioresour. Technol. 1998. Vol. 63. N 2. P. 115–121.
30. Singh Y. Photosynthetic activity, and lipid and hydrocarbon production by alginatemmobilized cells of Botryococcus in relation to growth phase // J. Microbiol. Biotech. 2003. Vol. 13. N 5. P. 687–691.
31. de-Bashan L.E., Bashan Y., Moreno M., Lebsky V.K., Bustillos J.J. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgaegrowth-promoting bacterium Azospirillum brasilense // Canad. J. Microbiol. 2002. Vol. 48. N 6. P. 514–521.
32. Moreno-Garrido I., Campana O., Lubián L., Blasco J. Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation // Mar. Pollut. Bull. 2005. Vol. 51. N 8. P. 823–829.
33. Joo D., Cho M., Lee J., Park J., Kwak J., Han Y., Bucholz R. New strategy for the cultivation of microalgae using microencapsulation // J. Microencaps. 2001. Vol. 18. N 5. P. 567–576.
34. Blanco A., Sanz B., Llama M., Serra J. Biosorption of heavy metals to immobilised Phormidium laminosum biomass // J. Biotech. 1999. Vol. 69. N 2. P. 227–240.
35. Garbisu C., Gil J., Bazin M., Hall D., Serra J. Removal of nitrate from water by foam- immobilized Phormidium laminosum in batch and continuous-flow bioreactors // J. Appl. Phycol. 1991. Vol. 3. N 3. P. 221–234.
36. Aguilar-May B., del Pilar Sánchez-Saavedra M., Lizardi J., Voltolina D. Growth of Synechococcus sp. immobilized in chitosan with different times of contact with NaOH // J. Appl. Phycol. 2007. Vol. 19. N 2. P. 181–183.
37. Banerjee M., Mishra S., Chatterjee J. Scavenging of nickel and chromium toxicity in Aulosira fertilissima by immobilization: Effect on nitrogen assimilating enzymes // Electr. J. Biotech. 2004. Vol. 7. N 3. P. 13–14.
38. Thakur A., Kumar H. Use of natural polymers as immobilizing agents and effects on the growth of Dunaliella salina and its glycerol production // Acta Biotech. 1999. Vol. 19. N 1. P. 37–44.
39. Lebeau T., Moan R., Turpin V., Robert J. Alginateentrapped Haslea ostrearia as inoculum for the greening of oysters // Biotech. Tech. 1998. Vol. 12. N 11. P. 847–850.
40. Cassidy M., Lee H., Trevors J. Environmental applications of immobilized microbial cells: a review // J. Industr. Microbiol. 1996. Vol. 16. N 2. P. 79–101.
41. Jeanfils J., Collard F. Effect of immobilizing Scenedesmus obliquus cells in a matrix on oxygen evolution and fluorescence properties // Europ. J. Appl. Microbiol. Biotech. 1983. Vol. 17. N 4. P. 254–257.
42. Robinson P., Goulding K., Mak A., Trevan M. Factors affecting the growth characteristics of alginate-entrapped Chlorella // Enz. Microbiol. Technol. 1986. Vol. 8. N 12. P. 729–733.
43. Takaichi S. Carotenoids in algae: distributions, biosynthese and functions // Mar. Drugs. 2011. Vol. 9. N 6. P. 1101–1118.
44. Gudin C., Thepenier C. Bioconversion of solar energy into organic chemicals by microalgae // Advan. Biotech. Proces. 1986. Vol. 6. P. 73–110.
45. Matsunaga T., Sudo H., Takemasa H., Wachi Y., Nakamura N. Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia immobilized on light-diffusing optical fibers // Appl. Microbiol. Biotech. 1996. Vol. 45. N 1–2. P. 24–27.
46. Rao K., Hall D. Photosynthetic production of fuels and chemicals in immobilized systems // Trends Biotech. 1984. Vol. 2. N 5. P. 124–129.
47. Kannaiyan S., Rao K., Hall D. Immobilization of Anabaena azollae from Azolla filiculoides in polyvinyl foam for ammonia production in a photobioreactor system //World J. Microb. Biot. 1994. Vol. 10. N 1. 55–58.
48. Melis A., Zhang L., Forestier M., Ghirardi M., Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Сhlamydomonas reinhardtii // Plant Physiol. 2000. Vol. 122. N 1. P. 127–136.
49. Kosourov S., Seibert M. Hydrogen photoproduction by nutrient deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions // Biotech. Bioeng. 2009. Vol. 102. N 1. P. 50–58.
50. Laurinavichene T., Kosourov S., Ghirardi M., Seibert M., Tsygankov A. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures // J. Biotechnol. 2008. Vol. 134. N 3. P. 275–277.
51. Kayano H., Karube I., Matsunaga T., Suzuki S., Nakayama O. A photochemical fuel cell system using Anabaena N-7363 // Europ. J. Appl. Microbiol. Biotech. 1981. Vol. 12. N 1. P. 1–5.
52. Solovchenko A., Lukyanov A., Vasilieva S., Savanina Y., Solovchenko O., Lobakova E. Possibilities of bioconversion of agricultural waste with the use of microalgae // Moscow
53. Univ. Biol. Sci. Bull. 2013. Vol. 68. N 4. P. 206–215.
54. Abe K., Takahashi E., Hirano M. Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia
55. aurea (Chlorophyta) // J. Appl. Phycol. 2008. Vol. 20. N 3. P. 283–288.
56. Travieso L., Benitez F., Dupeiron R. Sewage treatment using immobilied microalgae // Biores. Technol. 1992. Vol. 40. N 2. P. 183–187.
57. de la Noüe J., Proulx D. Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium // Appl. Microbiol. Biotech. 1988. Vol. 29. N 2–3. P. 292–297.
58. Garbayo I., Vigara A., Conchon V., Dos Santos V., Vílchez C. Nitrate consumption alterations induced by alginateentrapment of Chlamydomonas reinhardtii cells // Process Biochem. 2000. Vol. 36. N 5. P. 459–466.
59. Sawayama S., Rao K., Hall D. Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor // Appl. Microbiol. Biotech. 1998. Vol. 49. N 4. P. 463–468.
60. Nascimento C., Xing B. Phytoextraction: a review on enhanced metal availability and plant accumulation // Scientia agricola. 2006. Vol. 63. N 3. P. 299–311.
61. Malik A. Metal bioremediation through growing cells // Environ. Int. 2004. Vol. 30. N 2. P. 261–278.
62. Da Costa A.C.A., De França F.P. Cadmium uptake by biosorbent seaweeds: adsorption isotherms and some process conditions // Separat. Science Technol. 1996. Vol. 31. N 17. P. 2373–2393.
63. Alhakawati M., Banks C. Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam // J. Environ. Manag. 2004. Vol. 72. N 4. P. 195–204.
64. Jang L., Nguyen D., Geesey G. Selectivity of alginate gel for Cu over Zn when acidic conditions prevail // Water Res. 1999. Vol. 33. N 12. P. 2817–2825.
65. Akhtar N., Iqbal M., Zafar S., Iqbal J. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr (III) // J. Environ. Sci. 2008. Vol. 20. N 2. P. 231–239.
66. Bayramoglu G., Tuzun I., Celik G., Yilmaz M., Arica M. Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads // Int. J. Mineral Process. 2006. Vol. 81. N 1. P. 35– 43.
67. Nakajima A., Horikoshi T., Sakaguchi T. Recovery of uranium by immobilized microorganisms // Eur. J. Appl. Microbiol. Biotech. 1982. Vol. 16. N 2–3. P. 88–91.
68. Dziwulska U., Bajguz A., Godlewska-Zylkiewicz B. The use of algae Chlorella vulgaris immobilized on cellex-T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination // Anal. Letters. 2004. Vol. 37. N 10. P. 2189–2203.
Review
For citations:
Vasilieva S.G., Lobakova E.S., Lukyanov А.А., Solovchenko А.Е. IMMOBILIZED MICROALGAE IN BIOTECHNOLOGY. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(3):65-72. (In Russ.)