Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

ВОЗМОЖНОСТИ БИОТЕХНОЛОГИЧЕСКОЙ ПЕРЕРАБОТКИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОТХОДОВ С ИСПОЛЬЗОВАНИЕМ МИКРОВОДОРОСЛЕЙ

Полный текст:

Аннотация

Обзор посвящен новой методологии биологической очистки и глубокой переработки отходов животноводческих ферм (навоза, помета, сточных вод) с использованием интенсивной культуры фототрофных микроорганизмов (микроводорослей, МВ). Рассматриваются критерии выбора МВ и особенности их культивирования для эффективного изъятия биогенных элементов и деструкции органических компонентов животноводческих отходов, варианты утилизации полученной биомассы МВ (например, для производства кормовых добавок и удобрений) с целью повышения рентабельности переработки отходов. Приводится анализ преимуществ и недостатков нового метода по сравнению с традиционными анаэробными технологиями. Особое внимание уделяется интегрированным технологиям, сочетающим традиционные методы анаэробной переработки и доочистку с применением МВ.

Об авторах

А. Е. Соловченко

Россия

докт. биол. наук, вед. науч. сотр. кафедры биоинженерии биологического факультета МГУ. Тел: 8-495-939-25-87



А. А. Лукьянов

Россия

канд. биол. наук, науч. сотр. кафедры биоинженерии биологического факультета МГУ. Тел: 8-495-939-25-87



С. Г. Васильева

Россия

канд. биол. наук, науч. сотр. кафедры биоинженерии биологического факультета МГУ. Тел: 8-495-939-25-87;



Я. В. Саванина

Россия

канд. биол. наук, cт. науч. сотр. кафедры биоинженерии биологического факультета МГУ. Тел: 8-495-939-41-69



О. В. Соловченко

Россия

канд. биол. наук, лаборант кафедры биоинженерии биологического факультета МГУ. Тел: 8-495-939-25-87



Е. С. Лобакова

Россия

докт. биол. наук, проф. кафедры биоинженерии биологического факультета МГУ. Тел: 8-495-939-41-69



Список литературы

1. Mulbry W., Kondrad S., Pizarro C., Kebede-Westhead E. Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers // Bioresour. Technol. 2008. Vol. 99. P. 8137—8142.

2. Kim M.K., Park J.W., Park C.S., Kim S.J., Jeune K.H., Chang M.U., Acreman J. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater // Bioresour. Technol. 2007. Vol. 98. P. 2220—2228.

3. Нтп 17—99. Нормы технологического проектирования систем удаления и подготовки к использованию навоза и помета. М.: Министерство сельского хозяйства Российской Федерации, 2001. 84 с.

4. Афанасьев А. Анализ технологий переработки навоза и помета // Вестн. ВНИИМЖ. 2012. Т. 4. P. 28—35.

5. Oswald W.J., Gotaas H.B. Photosynthesis in sewage treatment // Trans. Am. Soc. Civ. Eng. 1957. Vol. 122. P. 73—105.

6. Sivakumar G., Xu J., Thompson R.W., Yang Y., RandolSmith P., Weathers P.J. Integrated green algal technology for bioremediation and biofuel // Bioresour. Technol. 2011.

7. Munoz R., Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review // Water Res. 2006. Vol. 40. P. 2799—2815.

8. Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review // biometals. 2002. Vol. 15. P. 377—390.

9. Crawford M., Golfetto I., Ghebremeskel K., Min Y., Moodley T., Poston L., Phylactos A., Cunnane S., Schmidt W. The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants // Lipids. 2003. Vol. 38. P. 303—315.

10. Wang X., Lin H., Gu Y. Multiple roles of dihomo-gamma-linolenic acid against proliferation diseases // Lipids in Health and Disease. 2012. Vol. 11. P. 25.

11. Cohen Z., Khozin-Goldberg I. Searching for pufa-rich microalgae // Single Cell Oils / Eds. Z. Cohen, C. Ratledge. 2010, American Oil Chemists’ Society: Champaign IL. P. 201—224.

12. Guschina I.A., Harwood J.L. Algal lipids and their metabolism // Algae for biofuels and energy / Eds. M.A. Borowitzka, N.R. Moheimani. Dordrecht; Heidelberg; New York; London: Springer, 2013 P. 17—36.

13. Dhankhar J., Kadian S.S., Sharma A. Astaxanthin: a potential carotenoid // Intern. J. Pharmaceut. Scien. Res.2012. Vol. 3. P. 1246—1259.

14. Takaichi S. Carotenoids in algae: distributions, biosyntheses and functions // Mar. Drugs. 2011. Vol. 9. P. 1101—1118.

15. Park J.B.K., Craggs R.J., Shilton A.N. Wastewater treatment high rate algal ponds for biofuel production // Bioresour. Technol. 2011. Vol. 102. P. 35—42.

16. Georgianna D.R., Mayfield S.P. Exploiting diversity and synthetic biology for the production of algal biofuels // Nature. 2012. Vol. 488. P. 329—335.

17. Pittman J.K., Dean A.P., Osundeko O. The potential of sustainable algal biofuel production using wastewater resources // Bioresour. Technol. 2011. Vol. 102. P. 17—25.

18. Fu W., Guxmundsson У., Paglia G., Herjуlfsson G., Andrйsson У., Palsson B., Brynjуlfsson S. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution // Appl. Microbiol. Biotechnol. 2013. Vol. 97. P. 2395—2403.

19. Vance C.P., Uhde-Stone C., Allan D.L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource // New Phytol. 2003. Vol. 157. P. 423—447.

20. Лебедев Е. Возможные экологические последствия избыточного применения азотных удобрений // Минеральный и биологический азот в СССР. М.: Наука, 1985. C. 41—60.

21. Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N., Smith V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen // Ecol. Appl. 1998. Vol. 8. P. 559—568.

22. Mulbry W., Kondrad S., Buyer J. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates // J. Appl. Phycol. 2008. Vol. 20. P. 1079—1085.

23. Mulbry W., Westhead E.K., Pizarro C., Sikora L. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer // Bioresour. Technol. 2005. Vol. 96. P. 451—458.

24. Olguнn E.J. Phycoremediation: key issues for cost-effective nutrient removal processes // Biotechnol. Adv. 2003. Vol. 22. P. 81—91.

25. Aslan S., Kapdan I.K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae // Ecol. Eng. 2006. Vol. 28. P. 64—70.

26. Ruiz-Marin A., Mendoza-Espinosa L.G., Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater // Bioresour. Technol. 2010. Vol. 101. P. 58—64.

27. Kebede-Westhead E., Pizarro C., Mulbry W.W. Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates // J. Appl. Phycol. 2006. Vol. 18. P. 41—46.

28. Lincoln E., Wilkie A., French B. Cyanobacterial process for renovating dairy wastewater // Biomass Bioenergy. 1996. Vol. 10. P. 63—68.

29. Pizarro C., Mulbry W., Blersch D., Kangas P. An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent // Ecol. Eng. 2006. Vol. 26 P. 321—327.

30. Travieso L., Benitez F., Dupeiron R. Sewage treatment using immobilied microalgae // Bioresour. Technol. 1992. Vol. 40. P. 183—187.

31. Hoffmann J.P. Wastewater treatment with suspended and nonsuspended algae // J. Phycol. 2002. Vol. 34. P. 757—763.

32. Jimenez-Perez M., Sanchez-Castillo P., Romera O., Fernandez-Moreno D., Pйrez-Martinez C. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure // Enzyme Microb. Technol. 2004. Vol. 34. P. 392—398.

33. Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview // Hydrobiologia. 2004. Vol. 512. P. 33—37.

34. Zarmi Y., Bel G., Aflalo C. Theoretical analysis of culture growth in flat-plate bioreactors: the essential role of timescales // Handbook of Microalgal Culture / Eds. A. Richmond, Q. Hu. Wiley-Blackwell, 2013. P. 205—224.

35. Lee C.G., Palsson B.q . High-density algal photobioreactors using light-emitting diodes // Biotechnol. Bioeng. 1994. Vol. 44. P. 1161—1167.

36. Richmond A., Cheng-Wu Z., Zarmi Y. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition // Biomol. Eng. 2003. Vol. 20. P. 229—236.

37. Vejrazka C., Janssen M., Streefland M., Wijffels R.H. Photosynthetic efficiency of chlamydomonas reinhardtii in attenuated, flashing light // Biotechnol. Bioeng. 2012.

38. Konig A., Pearson H., Silva S.A. Ammonia toxicity to algal growth in waste stabilization ponds // Water Sci. Technol. 1987. Vol. 19. P. 115—122.

39. Masseret E., Amblard C., Bourdier G., Sargos D. Effects of a waste stabilization lagoon discharge on bacterial and phytoplanktonic communities of a stream // Water Environ. Res. 2000. Vol. 72. P. 285—294.

40. Javanmardian M., Palsson B.O. High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system // Biotechnol. Bioeng. 2004. Vol. 38. P. 1182—1189.

41. Chen C.-Y., Yeh K.-L., Aisyah R., Lee D.-J., Chang J.-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review // Bioresour. Technol. 2011. Vol. 102. P. 71—81.

42. Ugwu C.U., Aoyagi H., Uchiyama H. Photobioreactors for mass cultivation of algae // Bioresour. Technol. 2008. Vol. 99. P. 4021—4028.

43. Camacho Rubio F., Sбnchez Mirуn A., Cerуn Garcнa M., Garcнa Camacho F., Molina Grima E., Chisti Y. Mixing in bubble columns: a new approach for characterizing dispersion coefficients // Chem. Eng. Sci. 2004. Vol. 59. P. 4369—4376.

44. Holland A.D., Wheeler D.R. Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence // Biotechnol. J. 2011. Vol. 6. P. 584—599.

45. Guschina I.A., Harwood J.L. Algal lipids and effect of the environment on their biochemistry // Lipids in Aquatic Ecosystems / Eds. M. Kainz, M. Brett, M. Arts. Dordrecht, Heidelberg; L.; N.Y.: Springer, 2009. P. 1—24.

46. Lau P., Tam N., Wong Y. Effect of algal density on nutrient removal from primary settled wastewater // Environ. Pollut. 1995. Vol. 89. P. 59—66.

47. Lavoie A., de la NoьeJ.Hyperconcentrated cultures of scenedesmus obliquus: a new approach for wastewater biological tertiary treatment? // Water Res. 1985. Vol. 19. P. 1437—1442.

48. Johnson M.B., Wen Z. Development of an attached microalgal growth system for biofuel production // Appl. Microbiol. Biotechnol. 2010. Vol. 85. P. 525—534.

49. Abeliovich A., Azov Y. Toxicity of ammonia to algae in sewage oxidation ponds // Appl. Environ. Microbiol. 1976. Vol. 31. P. 801.

50. Azov Y., Goldman J.C. Free Ammonia inhibition of algal photosynthesis in intensive cultures // Appl. Environ. Microbiol. 1982. Vol. 43. P. 735.

51. Brennan L., Owende P. Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products // Renewable and Sustainable Energy Rev. 2010. Vol. 14. P. 557—577.

52. Соловченко А., Лобакова Е., Барский Е., Саванина Я., Дольникова Г., Лукьянов А., Кирпичников М. Экологические фотобиотехнологии для очистки сточных вод // Биотехнология. 2011. № 6.

53. Abeliovich A. Water purification: algae in wastewater oxidation ponds // Handbok of microalgal culture: biotechnology and applied phycology / Ed. A. Richmond. Blackwell, 2004. P. 430—438.

54. Grobbelaar J. Microalgal biomass production: challenges and realities // Photosynthesis Res. 2010. Vol. 106. P. 135—144.

55. Morweiser M., Kruse O., Hankamer B., Posten C. Developments and perspectives of photobioreactors for biofuel production // Appl. Microbiol. Biotechnol. 2010. Vol. 87. P. 1—11.

56. Molina Grima E., Fernandez F., Garcнa Camacho F., Chisti Y. Photobioreactors: light regime, mass transfer, and scaleup // J. Biotechnol. 1999. Vol. 70. P. 231—247.

57. Pulz O., Scheibenbogen K. Photobioreactors: design and performance with respect to light energy input // Bioprocess and algae reactor technology / Ed. T. Scheper. Berlin; Heidelberg: Springer, 1998. P. 123—152.

58. de-Bashan L.E., Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects // Bioresour. Technol. 2010. Vol. 101. P. 1611—1627.

59. Abe K., Takahashi E., Hirano M. Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia aurea (Chlorophyta) // J. Appl. Phycol. 2008. Vol. 20. P. 283—288.

60. Zhang E., Wang B., Wang Q., Zhang S., Zhao B. Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment // Bioresour. Technol. 2008. Vol. 99. P. 3787—3793.

61. Molina Grima E., Belarbi E.H., Acien Fernandez F., Robles Medina A., Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics // Biotechnol. Adv. 2003. Vol. 20. P. 491—515.

62. Divakaran R., Sivasankara Pillai V. Flocculation of algae using chitosan // J. Appl. Phycol. 2002. Vol. 14. P. 419—422.

63. Olaizola M. Microalgal removal of Co2 from flue gases: changes in medium ph and flue gas composition do not appear to affect the photochemical yield of microalgal cultures // Biotechnology and Bioprocess Engineering. 2003. Vol. 8. P. 360—367.

64. Соловченко А. Физиологическая роль накопления нейтральных липидов эукариотическими микроводорослями при стрессах // Физиол. раст. 2012. Т. 59. С. 192—202.

65. Vooren G.V., Le Grand F., Legrand J., Cuinй S., Peltier G., Pruvost J. Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application // Bioresour. Technol. 2012.

66. Solovchenko A., Khozin-Goldberg I., Recht L., Boussiba S. Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids // Mar. Biotechnol. 2011. Vol. 13. P. 527—535.

67. Wilkie A.C., Mulbry W.W. Recovery of dairy manure nutrients by benthic freshwater algae // Bioresour. Technol. 2002. Vol. 84. P. 81—91.

68. Woertz I., Feffer A., Lundquist T., Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock // J. Environ. Eng. 2009. Vol. 135. P. 1115—1122.

69. An J.-Y., Sim S.-J., Lee J., Kim B. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus Braunii // J. Appl. Phycol. 2003. Vol. 15. P. 185—191.

70. Korzhenevskaya T., Baulina O., Gorelova O., Lobacova E., Butenko R., Gusev M. Artificial syncyanoses: the potential for modeling and analysis of natural symbioses // Symbiosis. 1993. Vol. 15. P. 77—103.

71. Antal T.K., Kolacheva A., Maslakov A., Riznichenko G.Y., Krendeleva T.E., Rubin A.B. Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii // Photosynthesis Res. 2013. Vol. 114. P. 143—154.

72. Holland A.D., Wheeler D.R. Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence // Biotechnol. J. 2011. Vol. 6. P. 584—599.

73. Holzwarth A.R., Lenk D., Jahns P. On the analysis of non-photochemical chlorophyll fluorescence quenching cur-ves I) Theoretical considerations // Biochim. Biophys. Acta (BBA) — Bioenergetics. V.


Для цитирования:


Соловченко А.Е., Лукьянов А.А., Васильева С.Г., Саванина Я.В., Соловченко О.В., Лобакова Е.С. ВОЗМОЖНОСТИ БИОТЕХНОЛОГИЧЕСКОЙ ПЕРЕРАБОТКИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОТХОДОВ С ИСПОЛЬЗОВАНИЕМ МИКРОВОДОРОСЛЕЙ. Вестник Московского университета. Серия 16. Биология. 2013;(4):38-49.

For citation:


Solovchenko A.E., Lukyanov A.A., Vasilieva S.G., Savanina Y.V., Solovchenko O.V., Lobakova E.S. POSSIBILITIES OF MICROALGAL BIOCONVERSION OF AGRICULTURAL WASTE. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2013;(4):38-49. (In Russ.)

Просмотров: 156


ISSN 0137-0952 (Print)