Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

EVALUATING PARP1 DOMAINS AS GOSSYPOL TARGETS

Abstract

Poly ADP-ribose polymerase 1 (PARP1) is an important enzyme, which is involved in DNA repair, replication, and transcription. Prospective anti-cancer drug gossypol inhibits human PARP1, but the mechanism of inhibition remains unknown. Previously it has been shown that gossypol interacts with purified BRCA1 C-terminus (BRCT) domain in vitro, but it remains unclear whether it inhibits PARP1 through BRCT domain in the context of the full length protein. Here it is shown that the BRCT domain within the full-length PARP1 protein is not required for inhibition of catalytic activity of PARP1 by gossypol. Our data obtained using a series of PARP1 mutations and H4-dependent pathway of PARP1 activation also show that Zinc fingers, the DNA binding domains of PARP1, are not involved in the inhibition of PARP1 catalytic activity by gossypol. Thus the likely candidate target(s) for gossypol action are other domains of PARP1 or interdomain linkers. 

About the Authors

S. Gross
Fox Chase Cancer Center, Philadelphia,
United States
Cancer Epigenetics Team


E. Yu. Kotova
Fox Chase Cancer Center, Philadelphia
United States
Cancer Epigenetics Team


N. V. Maluchenko
Lomonosov Moscow State University, Moscow
Russian Federation
Department of Bioengineering, School of Biology


J. M. Pascal
Université de Montréal
Canada
Department of Biochemistry and Molecular Medicine


V. M. Studitsky
Fox Chase Cancer Center, Philadelphia; Moscow State University, Moscow
Russian Federation
Department of Bioengineering, School of Biolog, MSU


References

1. Ame J.C., Spenlehauer C., de Murcia G. The PARP superfamily // BioEssays. 2004. Vol. 26. N 8. P. 882–893

2. Ludwig A., Behnke B., Holtlund J., Hilz H. Immunoquantitation and size determination of intrinsic poly(ADPribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes // J. Biol. Chem. 1988. Vol. 263. N 15. P.6993–6999.

3. Yamanaka H., Penning C.A., Willis E.H., Wasson D.B., Carson D.A. Characterization of human poly(ADP-ribose) polymerase with autoantibodies // J. Biol. Chem. 1988. Vol. 263. N 8. P. 3879–3883.

4. Haince JF., McDonald D., Rodrigue A., Dery U., Masson J.Y., Hendzel M.J., Poirier G.G. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites // J. Biol. Chem. 2008. Vol. 283. N 2. P. 1197–1208.

5. Thomas C., Tulin A.V. Poly-ADP-ribose polymerase: machinery for nuclear processes // Mol. Aspects Med. 2013. Vol. 34. N 6. P. 1124–1137.

6. Nishikimi M., Ogasawara K., Kameshita I., Taniguchi T., Shizuta Y. Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain // J. Biol. Chem. 1982. Vol. 257. N 11. P. 6102–6105.

7. Kameshita I., Matsuda Z., Taniguchi T., Shizuta Y. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain // J. Biol. Chem. 1984. Vol. 259. N 8. P. 4770–4776.

8. Gibson B.A., Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs // Nat. Rev. Mol. Cell Biol. 2012. Vol. 13 N 7. P. 411–424.

9. Langelier M.F., Servent K.M., Rogers E.E., Pascal J.M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation // J. Biol. Chem. 2008. Vol. 283. N 7. P. 4105–4114.

10. Tao Z., Gao P., Hoffman D.W., Liu H.W. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif // Biochemistry. 2008. Vol. 47. N 21. P. 5804–5813.

11. Langelier M., Ruhl D. D., Planck J.L., Kraus W.L., Pascal J.M. The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction // J. Biol. Chem. 2010. Vol. 285. N 24. P. 18877–18887.

12. Langelier M.F., Planck J.L., Roy S., Pascal J.M. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 // Science 2012. Vol. 336. N 6082. P. 728–732.

13. Bork P., Hofman K., Buche P., Neuwal A.F., Altschu S.F., Koonin E.V. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins // Faseb J. 1997. Vol. 11. N 1. P. 68–76.

14. Masson M., Niedergang C., Schreiber V., Muller S., Menissier-de Murcia J., de Murcia G. XRCC1 is specifically associated with poly(ADPribose) polymerase and negatively regulates its activity following DNA damage // Mol. Cell. Biol. 1998. Vol. 18. N 6. P. 3563–3571.

15. Masson M., Menissier-de Murcia J., Mattei, M.G., de Murcia G., Niedergang C.P. Poly(ADP-ribose) polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9 // Gene. 1997. Vol. 190. N 2. P. 287–296.

16. Buki K.G., Bauer P.I., Hakam A., Kun E. Identification of domains of poly(ADP-ribose) polymerase for protein binding and selfassociation // J. Biol. Chem. 1995. Vol. 270. N 7. P. 3370–3377.

17. Nie J., Sakamoto S., Song D., Qu Z., Ota K., Taniguchi T. Interaction of Oct-1 and automodification domain of poly(ADP-ribose) synthetase // FEBS Lett. 1998. Vol. 424. N 1–2. P. 27–32.

18. Griesenbeck J., Ziegler M., Tomilin N., Schweiger M., Oei S.L. Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1 // FEBS Lett. 1999. Vol. 443. N 1. P. 20–24.

19. Na Z., Peng B., Ng S., Pan S., Lee J.S., Shen H.M., Yao S.Q. A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain // Angew. Chem. Int. Ed. Engl. 2015. Vol. 54. N 8. P. 2515–2519.

20. Malyuchenko N.V., Kotova E.Yu., Kulaeva O.I., Kirpichnikov M.P., Studitskiy V.M. PARP1 inhibitors: Antitumor drug design // Acta Naturae. 2015. Vol. 7. N 3. P. 27–37.

21. Gilbert N.E. O’Reilly J.E., Chang C.J., Lin Y.C., Brueggemeier R.W. Antiproliferative activity of gossypol and gossypolone on human breast cancer cells // Life Sci. 1995. Vol. 57. N. 1. Р. 61–67.

22. Langelier M.F., Planck J.L., Servent K.M., Pascal J.M. Purification of human PARPI and PARPI domains from E.coli for structural and biochemical analysis // Methods Mol. Biol. 2011. Vol. 780. Р. 209–226.

23. Kotova E., Pinnola A.D., Tulin A.V. Small-molecule collection and high-throughput colorimetric assay to identify PARP-1 inhibitors // Methods Mol. Biol. 2011. Vol. 780. P. 491–516.

24. Dawicki-McKenna J.M., Langelier M.F., DeNizio J.E., Riccio A.A., Cao C.D., Karch K.R., McCauley M., Steffen J.D., Black B.E., Pascal J.M. PARP-1 activation requires local unfolding of an autoinhibitory domain // Mol. Cell. 2015. Vol. 60. N 5. P. 755–768.


Review

For citations:


Gross S., Kotova E.Yu., Maluchenko N.V., Pascal J.M., Studitsky V.M. EVALUATING PARP1 DOMAINS AS GOSSYPOL TARGETS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(4):61-65. (In Russ.)

Views: 355


ISSN 0137-0952 (Print)