Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

НЕЙРОТРОФИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ГОЛОВНОГО МОЗГА В ОНТОГЕНЕЗЕ И ПРИ РАЗВИТИИ НЕЙРОДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ

Полный текст:

Аннотация

Нейротрофические факторы мозга играют ключевую роль в онтогенетических изменениях функционирования нервной системы. За шесть десятилетий активных исследований структуры и функций белков семейства нейротрофинов наиболее полно охарактеризованы фактор роста нервов (NGF) и мозговой нейротрофический фактор (BDNF). Сложная координация синтеза, транспорта, секреции и взаимодействия пронейротрофинов и зрелых нейротрофинов, а также их рецепторов — белков семейства Trk — тирозинкиназы и p75NTR-рецептора — обусловливает широкий спектр их биологической активности. В эмбриогенезе нейротрофические факторы принимают участие в становлении нервной системы, регулируя как деление, дифференцировку, выживание, миграцию и рост нейронов и их отростков, так и запуск апоптоза. В зрелом мозге нейротрофины участвуют в поддержании функционального состояния нейронов и глиальных клеток, регуляции синаптической пластичности. Закономерно, что развитие характерных для старения и нейродегенеративных заболеваний процессов тесно связано с изменением нейротрофического обеспечения головного мозга, обусловленным как нарушением метаболизма нейротрофинов, так и модификацией их доступности вследствие изменения микроокружения нейронов. Как перспективный подход к терапии нейродегенеративных расстройств рассматривается восстановление баланса нейротрофических факторов в мозге. 

Об авторах

Е. А. Рудницкая
Институт цитологии и генетики СО РАН, Новосибирск
Россия
Рудницкая Екатерина Александровна — аспирант сектора молекулярных механизмов старения ИЦиГ СО РАН


Н. Г. Колосова
Институт цитологии и генетики СО РАН, Новосибирск; Новосибирский государственный университет, Новосибирск
Россия
Колосова Наталия Гориславовна — доктор биологических наук, профессор, зав. сектором молекулярных механизмов старения ИЦиГ СО РАН


Н. А. Стефанова
Институт цитологии и генетики СО РАН, Новосибирск
Россия
Стефанова Наталья Анатольевна — доктор биологических наук, старший научный сотрудник сектора молекулярных механизмов старения ИЦиГ СО РАН


Список литературы

1. Иванов А.Д. Роль NGF и BDNF в регуляции деятельности зрелого мозга // Журн. высш. нерв. деят. 2014. Т. 64. № 2. С. 137–146.

2. Bothwell M. NGF, BDNF, NT3 and NT4 // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 3–15.

3. Dechant G., Barde Y.A. The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system // Nat. Neurosci. 2002. Vol. 5. N 11. P. 1131–1136.

4. Bothwell M. Recent advances in understanding neurotrophin signaling // F1000Res. 2016. Vol. 5. N 1885. P. 1–9.

5. Jaszberenyi M., Rick F.G., Szalontay L., Block N.L., Zarandi M., Cai R.Z., Schally A.V. Beneficial effects of novel antagonists of GHRH in different models of Alzheimer’s disease // Aging. 2012. Vol. 4. N 11. P. 755–767.

6. Tanisawa K., Mikami E., Fuku N., et al. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes // BMC Genomics. 2013. Vol. 14. N 248. P. 1–15.

7. Capsoni S., Tiveron C., Vignone D., Amato G., Cattaneo A. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. N 27. P. 12299–12304.

8. Levi-Montalcini R., Hamburger V. A diffusible agent of mouse sarcoma producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embryo // J. Exp. Zool. 1953. Vol. 123. N 2. P. 233–287.

9. Cohen S., Levi-Montalcini R. A nerve growth-stimulating factor isolated from snake venom // Proc. Natl. Acad. Sci. USA. 1956. Vol. 42. N 9. P. 571–574.

10. Rafieva L.M., Gasanov E.V. Neurotrophin propeptides: biological functions and molecular mechanisms // Curr. Protein Pept. Sci. 2016. Vol. 17. N 4. P. 298–305.

11. Hempstead B.L. Deciphering proneurotrophin actions // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 17–32.

12. Bronfman F.C., Lazo O.M., Flores C., Escudero C.A. Spatiotemporal intracellular dynamics of neurotrophin and its receptors. implications for neurotrophin signaling and neuronal function // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 33–65.

13. Karpova N.N. Role of BDNF epigenetics in activitydependent neuronal plasticity // Neuropharmacology. 2014. Vol. 76. Pt. C. P. 709–718.

14. Cuello A.C., Bruno M.A., Bell K.F. NGF-cholinergic dependency in brain aging, MCI and Alzheimer’s disease // Curr. Alzheimer Res. 2007. Vol. 4. N 4. P. 351–358.

15. Lu B., Nagappan G., Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 223–250.

16. Ceni C., Unsain N., Zeinieh M.P., Barker P.A. Neurotrophins in the regulation of cellular survival and death // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 193–221.

17. Deinhardt K., Chao M.V. Trk Receptors // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 103–119.

18. Menn B., Timsit S., Represa A., Mateos S., Calothy G., Lamballe F. Spatiotemporal expression of noncatalytic TrkC NC2 isoform during early and late CNS neurogenesis: a comparative study with TrkC catalytic and p75NTR receptors // Eur. J. Neurosci. 2000. Vol. 12. N 9. P. 3211–3223.

19. Eide F.F., Vining E.R., Eide B.L., Zang K., Wang X.Y., Reichardt L.F. Naturally occurring truncated TrkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling // J. Neurosci. 1996. Vol. 16. N 10. P. 3123–3129.

20. Skeldal S., Sykes A.M., Glerup S., Matusica D., Palstra N., Autio H., Boskovic Z., Madsen P., Castrén E., Nykjaer A., Coulson E.J. Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis // J. Biol. Chem. 2012. Vol. 287. N 52. P. 43798–43809.

21. Zampieri N., Xu C.F., Neubert T.A., Chao M.V. Cleavage of p75 neurotrophin receptor by alpha-secretase and gamma-secretase requires specific receptor domains // J. Biol. Chem. 2005. Vol. 280. N 15. P. 14563–14571.

22. Sykes A.M., Palstra N., Abankwa D., Hill J.M., Skeldal S., Matusica D., Venkatraman P., Hancock J.F., Coulson E.J. The effects of transmembrane sequence and dimerization on cleavage of the p75 neurotrophin receptor by γ-secretase // J. Biol. Chem. 2012. Vol. 287. N 52. P.43810–43824.

23. Blöchl A., Blumenstein L., Ahmadian M.R. Inactivation and activation of Ras by the neurotrophin receptor p75 // Eur. J. Neurosci. 2004. Vol. 20. N 9. P. 2321–2335.

24. Zhang T., Mi Z., Schor N.F. Role of tyrosine phosphorylation in the antioxidant effects of the p75 neurotrophin receptor // Oxid. Med. Cell Longev. 2009. Vol. 2. N 4. P. 238–246.

25. Meeker R.B., Williams K.S. The p75 neurotrophin receptor: at the crossroad of neural repair and death // Neural Regen. Res. 2015. Vol. 10. N 5. P. 721–725.

26. Majdan M., Lachance C., Gloster A., Aloyz R., Zeindler C., Bamji S., Bhakar A., Belliveau D., Fawcett J., Miller F.D., Barker P.A. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis // J. Neurosci. 1997. Vol. 17. N 18. P. 6988–6998.

27. Kraemer B.R., Yoon S.O., Carter B.D. The biological functions and signaling mechanisms of the p75 neurotrophin receptor // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 121–164.

28. Esposito D., Patel P., Stephens R.M., Perez P., Chao M.V., Kaplan D.R., Hempstead B.L. The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor // J. Biol. Chem. 2001. Vol. 276. N 35. P. 32687-32695.

29. Hu Y., Lee X., Shao Z., Apicco D., Huang G., Gong B.J., Pepinsky R.B., Mi S. A DR6/p75(NTR) complex is responsible for β-amyloid-induced cortical neuron death // Cell Death Dis. 2013. Vol. 4. N 4. P. 1–8.

30. Nykjaer A., Lee R., Teng K.K., Jansen P., Madsen P., Nielsen M.S., Jacobsen C., Kliemannel M., Schwarz E., Willnow T.E., Hempstead B.L., Petersen C.M. Sortilin is essential for proNGF-induced neuronal cell death // Nature. 2004. Vol. 427. N 6977. P. 843–848.

31. Quartu M., Serra M.P., Manca A., Follesa P., Ambu R., Del Fiacco M. High affinity neurotrophin receptors in the human pre-term newborn, infant, and adult cerebellum // Int. J. Dev. Neurosci. 2003. Vol. 21. N 6. P. 309–320.

32. Aboulkassim T., Tong X.K., Tse Y.C., Wong T.P., Woo S.B., Neet K.E., Brahimi F., Hamel E., Saragovi H.U. Ligand-dependent TrkA activity in brain differentially affects spatial learning and long-term memory // Mol. Pharmacol. 2011. Vol. 80. N 3. P. 498–508.

33. Colombo E., Cordiglieri C., Melli G., Newcombe J., Krumbholz M., Parada L.F., Medico E., Hohlfeld R., Meinl E., Farina C. Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration // J. Exp. Med. 2012. Vol. 209. N 3. P. 521–535.

34. Dekkers M.P.J., Nikoletopoulou V., Barde Y.A. Death of developing neurons: New insights and implications for connectivity // J. Cell Biol. 2013. Vol. 203. N 3. P. 385–393.

35. Hess D.M., Scott M.O., Potluri S., Pitts E.V., Cisterni C., Balice-Gordon R.J. Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses // J. Comp. Neurol. 2007. Vol. 501. N 4. P. 465–482.

36. Yamaguchi Y., Miura M. Programmed cell death in neurodevelopment // Dev. Cell. 2015. Vol. 32. N 4. P. 478–490.

37. Nikoletopoulou V., Lickert H., Frade J.M., Rencurel C., Giallonardo P., Zhang L., Bibel M., Barde Y.A. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not // Nature. 2010. Vol. 467. N 7311. P. 59–63.

38. Song J.H., Tse M.C., Bellail A., Phuphanich S., Khuri F., Kneteman N.M., Hao C. Lipid rafts and nonrafts mediate tumor necrosis factor–related apoptosis-inducing ligand–induced apoptotic and nonapoptotic signals in non– small cell lung carcinoma cells // Cancer Res. 2007. Vol. 67. N 14. P. 6946–6955.

39. Porcher C., Hatchett C., Longbottom R.E., McAinch K., Sihra T.S., Moss S.J., Thomson A.M., Jovanovic J.N. Positive feedback regulation between γ-aminobutyric acid type A (GABAA) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons // J. Biol. Chem. 2011. Vol. 286. N 24. P. 21667–21677.

40. Yoshii A., Constantine-Paton M. Post-synaptic BDNF-TrkB signaling in synapse maturation, plasticity and disease // Dev. Neurobiol. 2010. Vol. 70. N 5. P. 304–322.

41. Rios M. Neurotrophins and the regulation of energy balance and body weight // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 283–307.

42. Baquet Z.C., Bickford P.C., Jones K.R. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta // J. Neurosci. 2005. Vol. 25. N 26. P. 6251–6259.

43. Marmigère F., Carroll P. Neurotrophin signalling and transcription programmes interactions in the development of somatosensory neurons // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 329–353.

44. Lewin G.R., Lechner S.G., Smith E.S.J. Nerve growth factor and nociception: from experimental embryology to new analgesic therapy // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 251–282.

45. Wardle R.A., Poo M. Brain-derived neurotrophic factor modulation of gabaergic synapses by postsynaptic regulation of chloride transport // J. Neurosci. 2003. Vol. 23. N 25. P. 8722–8732.

46. Seoane-Collazo P., Fernø J., Gonzalez F., Diéguez C., Leis R., Nogueiras R., López M. Hypothalamic-autonomic control of energy homeostasis // Endocrine. 2015. Vol. 50. N 2. P. 276–291.

47. Xu B., Goulding E.H., Zang K., Cepoi D., Cone R.D., Jones K.R., Tecott L.H., Reichardt L.F. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor // Nat. Neurosci. 2003. Vol. 6. N 7. P. 736–742.

48. Stern J.E. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides // J. Neuroendocrinol. 2015. Vol. 27. N 6. P. 487–497.

49. Carbone D.L., Handa R.J. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor // Neuroscience. 2013. Vol. 239. P. 295–303.

50. Mousavi K., Jasmin B.J. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation // J. Neurosci. 2006. Vol. 26. N 21. P. 5739–5749.

51. Noble E.E., Billington C.J., Kotz C.M., Wang C. The lighter side of BDNF // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. Vol. 300. N 5. P. 1053–1069.

52. Wang C., Bomberg E., Billington C., Levine A., Kotz C.M. Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. Vol. 293. N 3. P. 992–1002.

53. Cassiman D., Denef C., Desmet V.J., Roskams T. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors // Hepatology. 2001. Vol. 33. N 1. P. 148–158.

54. Blurton-Jones M., Tuszynski M.H. Estradiol-induced modulation of estrogen receptor-beta and GABA within the adult neocortex: a potential transsynaptic mechanism for estrogen modulation of BDNF // J. Comp. Neurol. 2006. Vol. 499. N 4. P.603–612.

55. Singh M., Su C. Progesterone, brain-derived neurotrophic factor and neuroprotection // J. Neurosci. 2013. Vol. 239. P. 84–91.

56. Espinet C., Gonzalo H., Fleitas C., Menal M.J., Egea J. Oxidative stress and neurodegenerative diseases: a neurotrophic approach // Curr. Drug. Targets. 2015. Vol. 16. N 1. P. 20–30.

57. Puglielli L. Aging of the brain, neurotrophin signaling, and Alzheimer’s disease: is IGF1-R the common culprit? // Neurobiol. Aging. 2008. Vol. 29. N 6. P. 795–811.

58. Morley J.E., Farr S.A. The role of amyloid-beta in the regulation of memory // Biochem. Pharmacol. 2014. Vol. 88. N 4. P. 479–485.

59. Stefanova N.A., Kolosova N.G. Evolution of Alzheimer’s disease pathogenesis conception // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 4–10.

60. Zhang J., Sokal I., Peskind E.R., Quinn J.F., Jankovic J., Kenney C., Chung K.A., Millard S.P., Nutt J.G., Montine T.J. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases // Am. J. Clin. Pathol. 2008. Vol. 129. N 4. P. 526–529.

61. Teixeira A.L., Barbosa I.G., Diniz B.S., Kummer A. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function // Biomark. Med. 2010. Vol. 4. N 6. P. 871–887.

62. Rohe M., Synowitz M., Glass R., Paul S.M., Nykjaer A., Willnow T.E. Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression // J. Neurosci. 2009. Vol. 29. N 49. P. 15472–15478.

63. Sotthibundhu A., Sykes A.M., Fox B., Underwood C.K., Thangnipon W., Coulson E.J. Beta-amyloid(1-42) induces neuronal death through the p75 neurotrophin receptor // J. Neurosci. 2008. Vol. 28. N 15. P. 3941–3946.

64. Perini G., Della-Bianca V., Politi V., Della Valle G., Dal-Pra I., Rossi F., Armato U. Role of p75 neurotrophin receptor in the neurotoxicity by -amyloid peptides and synergistic effect of inflammatory cytokines // J. Exp. Med. 2002. Vol. 195. N 7. P. 907–918.

65. Jakob-Roetne R., Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches // Angew. Chem. Int. Ed. Engl. 2009. Vol. 48. N 17. P. 3030–3059.

66. Niewiadomska G., Baksalerska-Pazera M., Riedel G. Cytoskeletal transport in the aging brain: focus on the cholinergic system // Rev. Neurosci. 2006. Vol. 17. N 6. P. 581–618.

67. Contestabile A. The history of the cholinergic hypothesis // Behav. Brain Res. 2011. Vol. 221. N 2. P. 334–340.

68. Burbach G.J., Hellweg R., Haas C.A., Del Turco D., Deicke U., Abramowski D., Jucker M., Staufenbiel M., Deller T. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice // J. Neurosci. 2004. Vol. 24. N 10. P. 2421–2430.

69. Kimura N., Takahashi M., Tashiro T., Terao K. Amyloid beta up-regulates brain-derived neurotrophic factor production from astrocytes: rescue from amyloid beta-related neuritic degeneration // J. Neurosci. Res. 2006. Vol. 84. N 4. P. 782–789.

70. Fahn S. Description of Parkinson’s disease as a clinical syndrome // Ann. N. Y. Acad. Sci. 2003. Vol. 991. P. 1–14.

71. Rodrigues T.M., Jerónimo-Santos A., Outeiro T.F., Sebastião A.M., Diógenes M.J. Challenges and promises in the development of neurotrophic factor-based therapies for Parkinson’s disease // Drugs Aging. 2014. Vol. 31. N 4. P. 239–261.

72. Chen L.W., Yung K.K.L., Chan Y.S., Shum D.K.Y., Bolam J.P. The proNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment of Parkinson’s disease // CNS Neurol. Disord. Drug. Targets. 2008. Vol. 7. N 6. P. 512–523.

73. Howells D.W., Porritt M.J., Wong J.Y., Batchelor P.E., Kalnins R., Hughes A.J., Donnan G.A. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra // Exp. Neurol. 2000. Vol. 166. N 1. P. 127–135.

74. Allen S.J., Watson J.J., Shoemark D.K., Barua N.U., Patel N.K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration // Pharmacol. Ther. 2013. Vol. 138. N 2. P. 155–175.

75. Scalzo P., K mmer A., Bretas T.L., Cardoso F., Teixeira A.L. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease // J. Neurol. 2010. Vol. 257. N 4. P. 540–545.

76. Salehi Z., Mashayekhi F. Brain-derived neurotrophic factor concentrations in the cerebrospinal fluid of patients with Parkinson’s disease // J. Clin. Neurosci. 2009. Vol. 16. N 1. P. 90–93.

77. Gauthier L.R., Charrin B.C., Borrell-Pagès M., Dompierre J.P., Rangone H., Cordeli res F.P., Mey J.D., MacDonald M.E., Leßmann V., Humbert S., Saudou F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules // Cell. 2004. Vol. 118. N 1. P. 127–138.

78. Ginés S., Bosch M., Marco S., Gavaldà N., DíazHernández M., Lucas J.J., Canals J.M., Alberch J. Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain // Eur. J. Neurosci. 2006. Vol. 23. N 3. P. 649–658.

79. Zuccato C., Marullo M., Conforti P., MacDonald M.E., Tartari M., Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease // Brain Pathol. 2008. Vol. 18. N 2. P. 225–238.

80. Zuccato C., Cattaneo E. Huntington’s Disease // Neurotrophic factors / Eds. G.R. Lewin and B.D. Carter. Berlin: Springer, 2014. P. 357–409.

81. Hernandez-Chan N.G., Bannon M.J., Orozco-Bar rios C.E., et al. Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson’s disease // J. Biomed. Sci. 2015. Vol. 22. N 59. P. 1–14.

82. Razgado-Hernandez L.F., Espadas-Alvarez A.J., Reyna-Velazquez P., Sierra-Sanchez A., Anaya-Martinez V., Jimenez-Estrada I., Bannon M.J., Martinez-Fong D., AcevesRuiz J. The Transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease // PLOS One. 2015. Vol. 10. N 2. P. 1–25.

83. Guillin O., Diaz J., Carroll P., Griffon N., Schwartz J.-C., Sokoloff P. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization // Nature. 2001. Vol. 411. N 6833. P. 86–89.

84. Liang J., Zheng X., Chen J., Li Y., Xing X., Bai Y., Li Y. Roles of BDNF, dopamine D3 receptors, and their interactions in the expression of morphine-induced context-specific locomotor sensitization // Eur. Neuropsychopharmacol. 2011. Vol. 21. N 11. P. 825–834.

85. Rangasamy S.B., Soderstrom K., Bakay R.A., Kordower J.H. Neurotrophic factor therapy for Parkinson’s disease // Recent advances in Parkinson’s disease translational and clinical research / Eds. A. Björklund and M.A. Cenci. Oxford: Elsevier, 2010. P. 237–264.

86. Sampath D., Perez-Polo R. Regulation of antioxidant enzyme expression by NGF // Neurochem. Res. 1997. Vol. 22. N 4. P. 351–362.

87. Satoh T., Yamagata T., Ishikawa Y., Yamada M., Uchiyama Y., Hatanaka H. Regulation of reactive oxygen species by nerve growth factor but not Bcl-2 as a novel mechanism of protection of PC12 cells from superoxide anion-induced death // J. Biochem. 1999. Vol. 125. N 5. P. 952–959.

88. Stefanova N.A., Maksimova K.Y., Kiseleva E., Rudnitskaya E.A., Muraleva N.A., Kolosova N.G. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology // J. Pineal Res. 2015. Vol. 59. N 2. P. 163–177.

89. Rudnitskaya E.A., Maksimova K.Y., Muraleva N.A., Logvinov S.V., Yanshole L.V., Kolosova N.G., Stefanova N.A. Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease // Biogerontology. 2015. Vol. 16. N 3. P. 303–316.


Для цитирования:


Рудницкая Е.А., Колосова Н.Г., Стефанова Н.А. НЕЙРОТРОФИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ГОЛОВНОГО МОЗГА В ОНТОГЕНЕЗЕ И ПРИ РАЗВИТИИ НЕЙРОДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ. Вестник Московского университета. Серия 16. Биология. 2016;(4):72-82.

For citation:


Rudnitskaya E.A., Kolosova N.G., Stefanova N.A. BRAIN NEUROTROPHIC SUPPLEMENTATION IN ONTHOGENESIS AND DURING DEVELOPMENT OF NEURODEGENERATIVE DISEASES. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(4):72-82. (In Russ.)

Просмотров: 179


ISSN 0137-0952 (Print)