ASSOCIATION BETWEEN INDIVIDUAL EEG CHARACTERISTICS AND LEVEL OF INTELLIGENCE
Abstract
The aim of the study was to investigate the relationship between individual characteristics the electroencephalogram in the resting state and the level of non-verbal intelligence. The study involved 77 students of Yaroslavl State University. Analyzing the relationship between IQ and spectral parameters of EEG theta, alpha and two sub bands of beta oscillations, we have found out that amplitude and power of alpha-band EEG oscillations and low frequency beta-bend EEG oscillations were positively correlated with test performance. The variety of brain periodic regimes was assessed by using correlation dimension of EEG. The correlation dimension can be used to quantify the degree of complexity of nonlinear dynamical system. It was found to be EEG correlation dimension was positively associated with the level of intelligence. To study the periodicity of the EEG signal was used the autocorrelation EEG analysis. It was shown that autocorrelogram duration was negatively associated with non-verbal intelligence level, and autocorrelogram amplitude was positively associated with IQ. We have deduced the regression equation which allows to predict the level of non-verbal intelligence based on individual EEG characteristics.
About the Authors
E. P. StankovaRussian Federation
Department of Human and Animal Physiology, School of Biology and Ecology
I. Y. Myshkin
Russian Federation
Department of Human and Animal Physiology, School of Biology and Ecology
References
1. Айзенк Г.Ю. Интеллект: Новый взгляд // Вопр. психологии. 1995. № 1. С. 111–129.
2. Марютина Т.М. Промежуточные фенотипы интеллекта в контексте генетической психофизиологии // Психология. Журн. Высш. шк. экономики. 2007. Т. 4. № 2. С. 22–47.
3. Новикова С.И. Ритмы ЭЭГ и когнитивные процессы // Соврем. зарубеж. психология. 2015. Т. 4. № 1. С. 91–108.
4. Anokhin A., Vogel F. EEG alpha rhythm frequency and intelligence in normal adults // Intelligence. 1996. Vol. 23. N 1. С. 1–14.
5. Thatchera R.W., Northa D., Bivera C. EEG and intelligence: Relations between EEG coherence, EEG phase delay and power // Clin. Neurophysiol. 2005. Vol. 116. N 9. P. 2129–2141.
6. Воробьёва Е.В. Интеллект и мотивация достижения: психофизиологические и психогенетические предикторы: Автореф. дисс. … докт. психол. наук. Ростовна-Дону, 2007. 47 с.
7. Ahmed S.A., Rani D.E., Sattar S.A. Alpha activity in EEG and intelligence // IJAIT. 2012 Vol. 2. N 1. P. 27–36.
8. Кочубейков Б.К., Сорокина М.А., Пашев В.И. Особенности нелинейной динамики ЭЭГ в различных возрастных группах // Междунар. журн. эксперим. образования. 2013. № 4. С. 1–14.
9. Papo D. Why should cognitive neuroscientists study the brain’s resting state? // Front. Hum. Neurosci. 2013. Vol. 7. P. 45.
10. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D: Nonlinear Phenomena. 1983. Vol. 9. N 1 P. 189–208.
11. Zoefel B., Huster R.J., Herrmann C.S. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance // NeuroImage. 2011. Vol. 54. N 2 P. 1427–1431.
12. Doppelmayr M., Klimesch W., Stadler W., Heine C. EEG alpha power and intelligence // Intelligence. 2002. Vol. 3. N 30. P. 289–302.
13. Van der Meer M.L., Tewarie P., Schoonheim M.M., Douw L., Barkhof F., Polman C.H., Stam C.J., Hillebrand A. Cognition in MS correlates with resting-state oscillatory brain activity: An explorative MEG source-space study // Neuroimage Clin. 2013. Vol. 2. P. 727–734.
14. Sadaghiani S.1, Scheeringa R., Lehongre K., Morillon B., Giraud A.L., Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography / functional magnetic resonance imaging study // J. Neurosci. 2010. Vol. 30. N 30. P. 10243–10250.
15. Hermens D.F., Soei E.X.,Clarke S.D., Kohn M.R., Gordon E.,Williams L.M. Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder // Pediatr. Neurol. 2005. Vol. 32. N 4. Р. 248–256.
16. Hanslmayr S., Sauseng P., Doppelmayr M., Schabus M, Klimesch W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects // Appl. Psychophysiol. Biofeedback. 2005. Vol. 30. N 1. P. 1–10.
17. Меклер А.А. Применение аппарата нелинейного анализа динамических систем для обработки сигналов ЭЭГ // Вестн. новых мед. технологий. 2007. Т. 14. № 1. С. 73–77.
Review
For citations:
Stankova E.P., Myshkin I.Y. ASSOCIATION BETWEEN INDIVIDUAL EEG CHARACTERISTICS AND LEVEL OF INTELLIGENCE. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(4):83-88. (In Russ.)