Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

МОЛЕКУЛЯРНОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЙ АДЖИТОКСИНА 2 С ПОТЕНЦИАЛ-УПРАВЛЯЕМЫМ КАЛИЕВЫМ КАНАЛОМ Kv1.3

Полный текст:

Аннотация

Потенциал-управляемый калиевый канал Kv1.3 участвует во многих процессах возбудимых и невозбудимых клеток: поддержании потенциала покоя, переносе сигнала, апоптозе, регуляции клеточного объёма, активации и пролиферации лейкоцитов. Блокирование этого канала является эффективным подходом для лечения аутоиммунных, онкологических, хронических воспалительных и метаболических заболеваний. Одними из наиболее перспективных блокаторов канала Kv1.3 являются токсины, выделенные из яда скорпионов. Знание молекулярных аспектов процесса связывания пептидных блокаторов с каналом является важным условием для создания высокоэффективных и селективных лигандов. В работе с помощью моделирования по гомологии и применения молекулярной динамики были построены комплексы гибридного канала KcsA-Kv1.3 с аджитоксином 2. Анализ образуемых контактов позволил выявить полную картину взаимодействий, а также идентифицировать ключевые остатки, ответственные за аффинность связывания токсина. Результаты вычислительного эксперимента согласуются с экспериментальными данными и могут быть важны для разработки лекарств.

Об авторах

А. Д. Волынцева
Московский государственный университет имени М.В. Ломоносова
Россия

мл. науч. сотр. кафедры биоинженерии биологического факультета,

119234, г. Москва, Ленинские горы, д. 1, стр. 12



В. Н. Новоселецкий
Московский государственный университет имени М.В. Ломоносова
Россия

канд. физ-мат. наук, доцент кафедры биоинженерии биологического факультета,

119234, г. Москва, Ленинские горы, д. 1, стр. 12



К. В. Шайтан
Московский государственный университет имени М.В. Ломоносова
Россия

докт. физ-мат. наук, профессор, зам. зав. кафедры биоинженерии биологического факультета,

119234, г. Москва, Ленинские горы, д. 1, стр. 12



А. В. Феофанов
Московский государственный университет имени М.В. Ломоносова
Россия

докт. биол. наук, профессор кафедры биоинженерии биологического факультета,

119234, г. Москва, Ленинские горы, д. 1, стр. 12



Список литературы

1. Pérez-Verdaguer M., Capera J., Serrano-Novillo C., Estadella I., Sastre D., Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies // Expert Opin. Ther. Targets. 2016. Vol. 20. N 5. P. 577–591.

2. Beeton C., Wulff H., Standifer N.E. et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases // Proc. Natl. Acad. Sci. U. S. A. 2006. Vol. 103. N 46. P. 17414–17419.

3. Menteyne A., Levavasseur F., Audinat E. Avignone E. Predominant functional expression of Kv1.3 by activated microglia of the hippocampus after Status epilepticus // PLoS One. 2009. Vol. 4. N 8. e6770.

4. Jang S.H., Choi S.Y., Ryu P.D., Lee S.Y. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo // Eur. J. Pharmacol. 2011. Vol. 651. N 1–3. P. 26–32.

5. Zhou Y.-Y., Hou G.-Q., He S.-W., Xiao Z., Xu H.J., Qiu Y.T., Jiang S., Zheng H., Li Z.Y. Psora-4, a Kv1.3 blocker, enhances differentiation and maturation in neural progenitor cells // CNS Neurosci. Ther. 2015. Vol. 21. N 7. P. 558–567.

6. Bodendiek S.B., Mahieux C., Hänsel W., Wulff H. 4-Phenoxybutoxy-substituted heterocycles — a structure-activity relationship study of blockers of the lymphocyte potassium channel Kv1.3 // Eur. J. Med. Chem. 2009. Vol. 44. N 5. P. 1838–1852.

7. Kuzmenkov A.I., Grishin E.V, Vassilevski A.A. Diversity of potassium channel ligands: focus on scorpion toxins // Biochem. (Mosc). 2015. Vol. 80. N 13. P. 1764–1799.

8. Luna-Ramírez K., Bartok A., Restano-Cassulini R., Quintero-Hernández V., Coronas F.I., Christensen J., Wright C.E., Panyi G., Possani L.D. Structure, molecular modeling, and function of the novel potassium channel blocker urotoxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi // Mol. Pharmacol. 2014. Vol. 86. N 1. P. 28–41.

9. Novoseletsky V.N., Volyntseva A.D., Shaitan K.V., Kirpichnikov M.P., Feofanov A.V. Modeling of the binding of peptide blockers to voltage-gated potassium channels: approaches and evidence // Acta Naturae. 2016. Vol. 8. N 2. P. 35–46.

10. Chen R., Chung S.H. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases // Biochemistry. 2012. Vol. 51. N 9. P. 1976–1982.

11. Han S., Yi H., Yin S.J., Chen Z.Y., Liu H., Cao Z.J., Wu Y.L., Li W.X. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease // J. Biol. Chem. 2008. Vol. 283. N 27. P. 19058–19065.

12. Bhuyan R., Seal A. Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives // Biophys. Chem. 2015. Vol. 203. P. 1–11.

13. Sali A, Blundell T. Comparative protein modeling by satisfaction of spatial restraints // J. Mol. Biol. 1993. Vol. 234. N 3. P. 779–815.

14. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids // J. Am. Chem. Soc. 1996. Vol. 118. N 45. P. 11225–11236.

15. Pyrkov T., Chugunov A., Krylov N., Nolde D.E., Efremov R.G. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes // Bioinformatics. 2009. Vol. 25. N 9. P. 1201–1202.

16. Legros C., Schulze C., Garcia M.L., Bougis P.E., Martin-Eauclaire M.F., Pongs O. Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA // Biochemistry. 2002. Vol. 41. N 51. P. 15369–15375.

17. Kudryashova K.S., Nekrasova O.V., Kuzmenkov A.I., Vassilevski A.A., Ignatova A.A., Korolkova Y.V., Grishin E.V., Kirpichnikov M.P., Feofanov A.V. Fluorescent system based on bacterial expression of hybrid KcsA channels designed for Kv1.3 ligand screening and study // Anal. Bioanal. Chem. 2013. Vol. 405. N 7. P. 2379–2389.

18. Eriksson M. A., Roux B. Modeling the structure of agitoxin in complex with the shaker K+ channel: a computational approach based on experimental distance // Biophys. J. 2002. Vol. 83. N 5. P. 2595–2609.

19. Banerjee A., Lee A., Campbell E., Mackinnon R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel // Elife. 2013. Vol. 2. e00594.

20. Webb B., Sali A. Comparative protein structure modeling using MODELLER // Curr. Protoc. Bioinformatics. 2016. Vol. 54. P. 5.6.1–5.6.37.

21. Nekrasova O.V, Volyntseva A.D., Kudryashova K.S., Novoseletsky V.N., Lyapina E.A., Illarionova A.V., Yakimov S.A., Korolkova Y.V., Shaitan K.V., Kirpichnikov M.P., Feofanov A.V. Complexes of peptide blockers with Kv1.6 pore domain: molecular modeling and studies with KcsA-Kv1.6 channel // J. Neuroimmune Pharmacol. 2016. DOI: 10.1007/s11481-016-9710-9.

22. Yu K., Fu W., Liu H., Luo X., Chen K.X., Ding J., Shen J., Jiang H. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel // Biophys. J. 2004. Vol. 86. N 6. P. 3542–3555.

23. Gross A., Mackinnon R. Agitoxin footprinting the shaker potassium channel pore // Neuron. 1996. Vol. 16. N 2. P. 399–406.

24. Hidalgo P., Mackinnon R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor // Science. 1995. Vol. 268. N 5208. P. 307–310.

25. Rashid M.H., Kuyucak S. Free energy simulations of binding of HsTx1 toxin to Kv1 potassium channels: the basis of Kv1.3/Kv1.1 selectivity // J. Phys. Chem. B. 2014. Vol. 118. N 3. P. 707–716.


Для цитирования:


Волынцева А.Д., Новоселецкий В.Н., Шайтан К.В., Феофанов А.В. МОЛЕКУЛЯРНОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЙ АДЖИТОКСИНА 2 С ПОТЕНЦИАЛ-УПРАВЛЯЕМЫМ КАЛИЕВЫМ КАНАЛОМ Kv1.3. Вестник Московского университета. Серия 16. Биология. 2017;72(1):29-34.

For citation:


Volyntseva A.D., Novoseletsky V.N., Shaitan K.V., Feofanov A.V. MOLECULAR MODELING OF INTERACTIONS OF AGITOXIN 2 WITH VOLTAGE-GATED POTASSIUM CHANNEL Kv1.3. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(1):29-34. (In Russ.)

Просмотров: 106


ISSN 0137-0952 (Print)