Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

MOLECULAR MODELING OF INTERACTIONS OF AGITOXIN 2 WITH VOLTAGE-GATED POTASSIUM CHANNEL Kv1.3

Abstract

Voltage-gated potassium channel Kv1.3 is involved in a number of processes in excitable and non-excitable cells: maintenance of resting membrane potential, transfer of signals, apoptosis, regulation of cell volume, activation and proliferation of white blood cells. Blocking this channel is an effective approach for the treatment of autoimmune, oncological, chronic inflammatory and metabolic diseases. The most prospective blockers of Kv1.3 are toxins isolated from the venom of scorpions. Knowledge of the molecular aspects of binding of peptide blockers with channel is an important condition for the creation of highly effective and selective ligands. In the present work a complex of hybrid channel KcsA-Kv1.3 with agitoxin 2 was built using homology modeling and molecular dynamics simulation. Analysis of formed contacts allowed us to reveal a complete pattern of interactions and to identify key residues that are responsible for the toxin binding affinity. Results of computational experiment are consistent with the experimental data and important for drug development.

About the Authors

A. D. Volyntseva
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology,

Leninskiye gory 1-12, Moscow, 119234



V. N. Novoseletsky
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology,

Leninskiye gory 1-12, Moscow, 119234



K. V. Shaitan
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology,

Leninskiye gory 1-12, Moscow, 119234



A. V. Feofanov
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology,

Leninskiye gory 1-12, Moscow, 119234



References

1. Pérez-Verdaguer M., Capera J., Serrano-Novillo C., Estadella I., Sastre D., Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies // Expert Opin. Ther. Targets. 2016. Vol. 20. N 5. P. 577–591.

2. Beeton C., Wulff H., Standifer N.E. et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases // Proc. Natl. Acad. Sci. U. S. A. 2006. Vol. 103. N 46. P. 17414–17419.

3. Menteyne A., Levavasseur F., Audinat E. Avignone E. Predominant functional expression of Kv1.3 by activated microglia of the hippocampus after Status epilepticus // PLoS One. 2009. Vol. 4. N 8. e6770.

4. Jang S.H., Choi S.Y., Ryu P.D., Lee S.Y. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo // Eur. J. Pharmacol. 2011. Vol. 651. N 1–3. P. 26–32.

5. Zhou Y.-Y., Hou G.-Q., He S.-W., Xiao Z., Xu H.J., Qiu Y.T., Jiang S., Zheng H., Li Z.Y. Psora-4, a Kv1.3 blocker, enhances differentiation and maturation in neural progenitor cells // CNS Neurosci. Ther. 2015. Vol. 21. N 7. P. 558–567.

6. Bodendiek S.B., Mahieux C., Hänsel W., Wulff H. 4-Phenoxybutoxy-substituted heterocycles — a structure-activity relationship study of blockers of the lymphocyte potassium channel Kv1.3 // Eur. J. Med. Chem. 2009. Vol. 44. N 5. P. 1838–1852.

7. Kuzmenkov A.I., Grishin E.V, Vassilevski A.A. Diversity of potassium channel ligands: focus on scorpion toxins // Biochem. (Mosc). 2015. Vol. 80. N 13. P. 1764–1799.

8. Luna-Ramírez K., Bartok A., Restano-Cassulini R., Quintero-Hernández V., Coronas F.I., Christensen J., Wright C.E., Panyi G., Possani L.D. Structure, molecular modeling, and function of the novel potassium channel blocker urotoxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi // Mol. Pharmacol. 2014. Vol. 86. N 1. P. 28–41.

9. Novoseletsky V.N., Volyntseva A.D., Shaitan K.V., Kirpichnikov M.P., Feofanov A.V. Modeling of the binding of peptide blockers to voltage-gated potassium channels: approaches and evidence // Acta Naturae. 2016. Vol. 8. N 2. P. 35–46.

10. Chen R., Chung S.H. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases // Biochemistry. 2012. Vol. 51. N 9. P. 1976–1982.

11. Han S., Yi H., Yin S.J., Chen Z.Y., Liu H., Cao Z.J., Wu Y.L., Li W.X. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease // J. Biol. Chem. 2008. Vol. 283. N 27. P. 19058–19065.

12. Bhuyan R., Seal A. Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives // Biophys. Chem. 2015. Vol. 203. P. 1–11.

13. Sali A, Blundell T. Comparative protein modeling by satisfaction of spatial restraints // J. Mol. Biol. 1993. Vol. 234. N 3. P. 779–815.

14. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids // J. Am. Chem. Soc. 1996. Vol. 118. N 45. P. 11225–11236.

15. Pyrkov T., Chugunov A., Krylov N., Nolde D.E., Efremov R.G. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes // Bioinformatics. 2009. Vol. 25. N 9. P. 1201–1202.

16. Legros C., Schulze C., Garcia M.L., Bougis P.E., Martin-Eauclaire M.F., Pongs O. Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA // Biochemistry. 2002. Vol. 41. N 51. P. 15369–15375.

17. Kudryashova K.S., Nekrasova O.V., Kuzmenkov A.I., Vassilevski A.A., Ignatova A.A., Korolkova Y.V., Grishin E.V., Kirpichnikov M.P., Feofanov A.V. Fluorescent system based on bacterial expression of hybrid KcsA channels designed for Kv1.3 ligand screening and study // Anal. Bioanal. Chem. 2013. Vol. 405. N 7. P. 2379–2389.

18. Eriksson M. A., Roux B. Modeling the structure of agitoxin in complex with the shaker K+ channel: a computational approach based on experimental distance // Biophys. J. 2002. Vol. 83. N 5. P. 2595–2609.

19. Banerjee A., Lee A., Campbell E., Mackinnon R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel // Elife. 2013. Vol. 2. e00594.

20. Webb B., Sali A. Comparative protein structure modeling using MODELLER // Curr. Protoc. Bioinformatics. 2016. Vol. 54. P. 5.6.1–5.6.37.

21. Nekrasova O.V, Volyntseva A.D., Kudryashova K.S., Novoseletsky V.N., Lyapina E.A., Illarionova A.V., Yakimov S.A., Korolkova Y.V., Shaitan K.V., Kirpichnikov M.P., Feofanov A.V. Complexes of peptide blockers with Kv1.6 pore domain: molecular modeling and studies with KcsA-Kv1.6 channel // J. Neuroimmune Pharmacol. 2016. DOI: 10.1007/s11481-016-9710-9.

22. Yu K., Fu W., Liu H., Luo X., Chen K.X., Ding J., Shen J., Jiang H. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel // Biophys. J. 2004. Vol. 86. N 6. P. 3542–3555.

23. Gross A., Mackinnon R. Agitoxin footprinting the shaker potassium channel pore // Neuron. 1996. Vol. 16. N 2. P. 399–406.

24. Hidalgo P., Mackinnon R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor // Science. 1995. Vol. 268. N 5208. P. 307–310.

25. Rashid M.H., Kuyucak S. Free energy simulations of binding of HsTx1 toxin to Kv1 potassium channels: the basis of Kv1.3/Kv1.1 selectivity // J. Phys. Chem. B. 2014. Vol. 118. N 3. P. 707–716.


Review

For citations:


Volyntseva A.D., Novoseletsky V.N., Shaitan K.V., Feofanov A.V. MOLECULAR MODELING OF INTERACTIONS OF AGITOXIN 2 WITH VOLTAGE-GATED POTASSIUM CHANNEL Kv1.3. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(1):29-34. (In Russ.)

Views: 340


ISSN 0137-0952 (Print)