PH OF CULTURE MEDIUM AND STATIONARY PHASE/CHRONOLOGICAL AGING OF DIFFERENT CELLS
Abstract
There is a point of view that the chronological aging (CA) of yeast and the stationary phase aging (SPA) of cultured animal and human cells are a consequence of growth medium acidification. However, a number of recent publications indicate that the process influences, to a certain extent, on the rate of “aging” of cells in the stationary phase of growth but does not determines it completely. Apparently, the key factor in this case is the cell proliferation restriction which leads to “aging” of the cells even under physiologically optimal conditions. During yeast CA and SPA of mammalian cells the medium is getting acidified to pH≤4. Preventing the medium acidification could make it possible to increase the culture life span, but the cells will still die out, albeit at a slower rate. Effects of the medium acidification observed during CA and SPA can be explained by the activation of highly conserved growth signaling pathways leading to the oxidative stress development; these processes, in turn, can be involved in aging of multicellular organisms and play a role in their age-related diseases. A while ago we studied the effect of buffer capacity of growth medium on SPA of transformed Chinese hamster cells. We found that HEPES at 20 mM had no effect on the cell growth, and both control and experimental growth curves reached plateau level on the same day. However, the cells grown with HEPES, on the one hand, reached lower saturation density than the control ones (i.e., were “older” in terms of the gerontological cell kinetics model), and on the other – underwent SPA at much slower rate (though still were “getting older”). It can be assumed that extracellular pH which, by the way, is well correlated with intracellular pH, is very important (I.A. Arshavsky’s concept on a role of the acidic alteration in aging) but not the key factor determining survival of cells in a stationary culture.
About the Authors
G. V. MorgunovaRussian Federation
Leninskiye gory 1-12, Moscow, 119234, Russia
A. A. Klebanov
Russian Federation
Leninskiye gory 1-12, Moscow, 119234, Russia
F. Marotta
Italy
Corso Matteotti 1/A, 20121 Milano, Italy
A. N. Khokhlov
Russian Federation
Leninskiye gory 1-12, Moscow, 119234, Russia
References
1. Khokhlov A.N. Which aging in yeast is “true”? // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 11–13.
2. Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10–14.
3. Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475–476.
4. Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14–20.
5. Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703–708.
6. Fabrizio P., Longo V.D. The chronological life span of Saccharomyces cerevisiae // Aging Cell. 2003. Vol. 2. N 2. P. 73–81.
7. Polymenis M., Kennedy B.K. Chronological and replicative lifespan in yeast: do they meet in the middle? // Cell Cycle. 2012. Vol. 11. N 19. P. 3531–3532.
8. Longo V.D., Shadel G.S., Kaeberlein M., Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae // Cell Metab. 2012. Vol. 16. N 1. P. 18–31.
9. Kapitanov A.B., Aksenov M.Y. Ageing of procaryotes. Acholeplasma laidlawii as an object for cell ageing studies: a brief note // Mech. Ageing Dev. 1990. Vol. 54. N 3. P. 249–258.
10. Nyström T. Stationary-phase physiology // Annu. Rev. Microbiol. 2004. Vol. 58. P. 161–181.
11. Hicks W.M., Kotlajich M.V., Visick J.E. Recovery from long-term stationary phase and stress survival in Escherichia coli require the L-isoaspartyl protein carboxyl methyltransferase at alkaline pH // Microbiology. 2005. Vol. 151. N 7. P. 2151–2158.
12. Gonidakis S., Longo V.D. Assessing chronological aging in bacteria // Cell senescence: methods and protocols / Eds. L. Galluzzi, I. Vitale, O. Kepp, and G. Kroemer. Humana Press, 2013. P. 421–437.
13. Khokhlov A.N. The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies // Biomarkers of aging: expression and regulation. Proceeding / Eds. F. Licastro and C.M. Caldarera. Bologna: CLUEB, 1992. P. 209–216.
14. Schneider E.L., Smith J.R. The relationship of in vitro studies to in vivo human aging // Int. Rev. Cytol. 1981. Vol. 69. P. 261–270.
15. Macieira-Coelho A. Kinetics of the proliferation of human fibroblasts during their lifespan in vitro // Mech. Ageing Dev. 1977. Vol. 6. N 5. P. 341–343.
16. Froehlich J.E., Rachmeler M. Inhibition of cell growth in the G1 phase by adenosine 3’, 5’- cyclic monophosphate // J. Cell Biol. 1974. Vol. 60. N 1. P. 249–257.
17. Конев С.В., Мажуль В.М. Межклеточные контакты. Минск: Наука и техника, 1977. 312 с.
18. Akatov V.S., Lezhnev E.I., Vexler A.M., Kublik L.N. Low pH value of pericellular medium as a factor limiting cell proliferation in dense cultures // Exp. Cell Res. 1985. Vol. 160. N 2. P. 412–418.
19. Kurkdjian A., Guern J. Intracellular pH: measurement and importance in cell activity // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989. Vol. 40. P. 271–303.
20. Ober S.S., Pardee A.B. Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts // Proc. Natl. Acad. Sci. U.S.A. 1987. Vol. 84. N 9. P. 2766–2770.
21. Аршавский И.А. Физиологические механизмы и закономерности индивидуального развития (основы негэнтропийного онтогенеза). М.: Наука, 1982. 270 с.
22. Овчинникова Н.В., Сорока А.Е., Хоронжак С.В., Прохоров Л.Ю., Ушаков В.Л., Хохлов А.Н. Буферная емкость культуральной среды: изучение в рамках клеточно- кинетической модели, применяемой для испытания геропротекторов и геропромоторов // Цитология. 1997. Т. 39. № 6. С. 498–499.
23. Murakami C.J., Wall V., Basisty N., Kaeberlein M. Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast // PloS One. 2011. Vol. 6. N 9. e24530.
24. Leontieva O.V., Blagosklonny M.V. Yeast-like chronological senescence in mammalian cells: phenomenon, mechanism and pharmacological suppression // Aging (Albany NY). 2011. Vol. 3. N 11. P. 1078–1091.
25. Murakami C., Delaney J.R., Chou A. et al. pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast // Cell Сycle. 2012. Vol. 11. N 16. P. 3087–3096.
26. Burtner C.R., Murakami C.J., Kennedy B.K., Kaeberlein M. A molecular mechanism of chronological aging in yeast // Cell Сycle. 2009. Vol. 8. N 8. P. 1256–1270.
27. Ashrafi K., Sinclair D., Gordon J.I., Guarente L. Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae // Proc. Natl. Acad. Sci. U.S.A. 1999. Vol. 96. N 16. P. 9100–9105.
28. Wasko B.M., Carr D.T., Tung H., et al. Buffering the pH of the culture medium does not extend yeast replicative lifespan // F1000Research. 2013. Vol. 2. 216.
29. Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР, серия “Общие проблемы физико-химической биологии”, том 9. М.: ВИНИТИ, 1988. 176 с.
30. Akimov S.S., Khokhlov A.N. Study of “stationary phase aging” of cultured cells under various types of proliferation restriction // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 520.
31. Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.
32. Khokhlov A.N. Does aging need an own program or the existing development program is more than enough? // Russ. J. Gen. Chem. 2010. Vol. 80. N 7. P. 1507–1513.
33. Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859–864.
34. Demidenko Z.N. Chronological lifespan in stationary culture: from yeast to human cells // Aging (Albany NY). 2011. Vol. 3. N 11. P. 1041–1042.
35. Fabrizio P., Wei M. Conserved role of medium acidification in chronological senescence of yeast and mammalian cells // Aging (Albany NY). 2011. Vol. 3. N 12. P. 1127–1129.
36. Kaeberlein M., Kennedy B.K. A new chronological survival assay in mammalian cell culture // Cell Cycle. 2012. Vol. 11. N 2. P. 201–202.
37. Mirisola M.G., Longo V.D. Acetic acid and acidification accelerate chronological and replicative aging in yeast // Cell Cycle. 2012. Vol. 11. N 19. P. 3532–3533.
38. Morgunova G.V., Klebanov A.A., Khokhlov A.N. Some remarks on the relationship between autophagy, cell aging, and cell proliferation restriction // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 4. P. 207–211.
39. Burhans W.C., Weinberger M. Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? // Cell Сycle. 2009. Vol. 8. N 14. P. 2300–2302.
40. Yucel E.B., Eraslan S., Ulgen K.O. The impact of medium acidity on the chronological life span of Saccharomyces cerevisiae–lipids, signaling cascades, mitochondrial and vacuolar functions // FEBS J. 2014. Vol. 281. N 4. P. 1281–1303.
41. Morgunova G.V., Klebanov A.A., Khokhlov A.N. Interpretation of data about the impact of biologically active compounds on viability of cultured cells of various origin from a gerontological point of view // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 2. P. 67–70.
42. Khokhlov A.N., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: pros and cons // Antiaging drugs: from basic research to clinical practice / Ed. A.M. Vaiserman. Royal Society of Chemistry, 2017. P. 53–74.
Review
For citations:
Morgunova G.V., Klebanov A.A., Marotta F., Khokhlov A.N. PH OF CULTURE MEDIUM AND STATIONARY PHASE/CHRONOLOGICAL AGING OF DIFFERENT CELLS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(2):58-62. (In Russ.)