MOLECULAR MODELING OF TETRAMERIZATION DOMAIN OF HUMAN POTASSIUM CHANNEL Kv10.2 IN DIFFERENT OLIGOMERIC STATES
Abstract
Voltage-gated potassium channel Kv10.2 is expressed in the nervous system, but its functions and involvement in the development of human disease remain poorly understood. Mutant forms of Kv10.2 channel were found in patients with epileptic encephalopathy and autistic features. Molecular modeling of the channel spatial structure is an important tool for gaining knowledge about the molecular aspects of the channel functioning and mechanisms responsible for the pathogenesis. In the present work, we performed molecular modeling of the helical fragment of the human Kv10.2 (hEAG2) C-terminal domain in dimeric, trimeric and tetrameric forms. The stability of all forms was confirmed by molecular dynamics simulation. Contacts and interactions, stabilizing the structure, were identified.
About the Authors
V. N. NovoseletskyRussian Federation
Department of Bioengineering, School of Biology
Leninskiye gory 1-12, Moscow, 119234, Russia
A. D. Volyntseva
Russian Federation
Department of Bioengineering, School of Biology
Leninskiye gory 1-12, Moscow, 119234, Russia
K. V. Shaitan
Russian Federation
Department of Bioengineering, School of Biology
Leninskiye gory 1-12, Moscow, 119234, Russia
O. S. Sokolova
Russian Federation
Department of Bioengineering, School of Biology
Leninskiye gory 1-12, Moscow, 119234, Russia
References
1. Saganich M.J., Vega-Saenz de Miera E., Nadal M.S., Baker H., Coetzee W.A., Rudy B. Cloning of components of a novel subthreshold-activating K(+) channel with a unique pattern of expression in the cerebral cortex // J. Neurosci. 1999. Vol. 19. N 24. P. 10789–10802.
2. Asher V., Sowter H., Shaw R., Bali A., Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer // World J. Surg. Oncol. 2010. Vol. 8. N 1. P. 113.
3. Yang Y., Vasylyev D.V., Dib-Hajj F., Veeramah K.R., Hammer M.F., Dib-Hajj S.D., Waxman S.G. Multistate structural modeling and voltage-clamp analysis of epilepsy/ autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state // J. Neurosci. 2013. Vol. 33. N 42. P. 16586–16593.
4. Wulff H., Pardo L.A., Castle N.A. Voltage-gated potassium channels as therapeutic targets // Nat. Rev. Drug Discov. 2009. Vol. 8. N 12. P. 982–1001.
5. Ju M., Wray D. Molecular identification and characterisation of the human eag2 potassium channel // FEBS Lett. 2002. Vol. 524. N 1–3. P. 204–210.
6. Schönherr R., Gessner G., Löber K., Heinemann S.H. Functional distinction of human EAG1 and EAG2 potassium channels // FEBS Lett. 2002. Vol. 514. N 2–3. P. 204–208.
7. Karlova M.G., Pischalnikova A.V., Ramonova A.A., Moisenovich M.M., Sokolova O.S., Shaitan K.V. In vitro fluorescence assay to study the folding of Kv ion channels // Biophysics. 2011. Vol. 56. N 2. P. 243–249.
8. Ludwig J., Owen D., Pongs O. Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel // EMBO J. 1997. Vol. 16. N 21. P. 6337–6345.
9. Jenke M., Sánchez A., Monje F., Stühmer W., Weseloh R.M., Pardo L.A. C-terminal domains implicated in the functional surface expression of potassium channels // EMBO J. 2003. Vol. 22. N 3. P. 395–403.
10. Wiener R., Haitin Y., Shamgar L., Fernández-Alonso M.C., Martos A., Chomsky-Hecht O., Rivas G., Attali B., Hirsch J.A. The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction // J. Biol. Chem. 2008. Vol. 283. N 9. P. 5815–5830.
11. Ju M., Wray D. Molecular regions responsible for differences in activation between heag channels // Biochem. Biophys. Res. Commun. 2006. Vol. 342. N 4. P. 1088–1097.
12. Stevens L., Ju M., Wray D. Roles of surface residues of intracellular domains of heag potassium channels // Eur. Biophys. J. 2009. Vol. 38. N 4. P. 523–532.
13. Sokolova O.S., Shaitan K.V., Grizel A.V., Popinako A.V., Karlova M.G., Kirpichnikov M.P. Three-dimensional structure of human voltage-gated ion channel kv10.2 studied by electron microscopy of macromolecules and molecular modeling // Russ. J. Bioorganic Chem. 2012. Vol. 38. N 2. P. 152–158.
14. Whicher J.R., MacKinnon R. Structure of the voltagegated K+ channel Eag1 reveals an alternative voltage sensing mechanism // Science. 2016. Vol. 353. N 6300. P. 664–669.
15. Novoseletsky V.N., Volyntseva A.D., Shaitan K.V., Kirpichnikov M.P., Feofanov A.V. Modeling of the binding of peptide blockers to voltage-gated potassium channels: Approaches and evidence // Acta Naturae. 2016. Vol. 8. N 2. P. 35–46.
16. Glukhov G.S., Popinako A.V., Grizel A.V., Shaitan K.V., Sokolova O.S. The structure of a human voltage-gated potassium Kv10.2 channel which lacks a cytoplasmic pas domain // Biophysics. 2016. Vol. 61. N 4. P. 591–595.
17. Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J.C. GROMACS: Fast, flexible, and free // J. Comp. Chem. 2005. Vol. 26. N 16. P. 1701–1718.
18. Strelkov S.V., Burkhard P. Analysis of α-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation // J. Struct. Biol. 2002. Vol. 137. N 1–2. P. 54–64.
19. Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. Electrostatics of nanosystems: application to microtubules and the ribosome // Proc. Natl. Acad. Sci. U.S.A. 2001. Vol. 98. N 18. P. 10037–10041.
20. Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force field // Nucleic Acids Res. 2005. Vol. 33. Suppl. 2. P. W382–W388.
21. Vincent T.L., Green P.J., Woolfson D.N. LOGICOIL –multi-state prediction of coiled-coil oligomeric state // Bioinformatics. 2013. Vol. 29. N 1. P. 69–76.
22. Rao J.N., Rivera-Santiago R., Li X.E., Lehman W., Dominguez R. Structural analysis of smooth muscle tropomyosin α and β isoforms // J. Biol. Chem. 2012. Vol. 287. N 5. P. 3165–3174.
23. Xu Q., Minor D.L. Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif // Protein Sci. 2009. Vol. 18. N 10. P. 2100–2114.
24. Kammerer R., Kostrewa D., Progias P., Honnappa S., Avila D., Lustig A., Winkler F.K., Pieters J., Steinmetz M.O. A conserved trimerization motif controls the topology of short coiled coils // Proc. Natl. Acad. Sci. U.S.A. 2005. Vol. 102. N 39. P. 13891–13896.
25. Howard R.J., Clark K.A., Holton J.M., Minor D.L. Structural insight into KCNQ (Kv7) channel assembly and channelopathy // Neuron. 2007. Vol. 53. N 5. P. 663–675.
26. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. “Lomonosov”: Supercomputing at Moscow State University // Contemporary High Performance Computing: From Petascale toward Exascale / Ed. J.S. Vetter. Boca Raton: Chapman & Hall/CRC, 2013. P. 283–307.
Review
For citations:
Novoseletsky V.N., Volyntseva A.D., Shaitan K.V., Sokolova O.S. MOLECULAR MODELING OF TETRAMERIZATION DOMAIN OF HUMAN POTASSIUM CHANNEL Kv10.2 IN DIFFERENT OLIGOMERIC STATES. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(2):82-86. (In Russ.)