Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

NUCLEI DEFORMATION IN HACAT KERATINOCYTES CULTIVATED ON ALIGNED FIBROUS SUBSTRATES

Abstract

Substrate topography influences cell shape, direction, and rate of migration, nucleus shape, gene expression levels. This influence is commonly studied using substrates with pre-defined surface structure and chemical composition. In the current work, we studied the state of HaCaT keratinocytes nuclei and actin cytoskeleton on poly(ε- caprolactone) scaffolds obtained by electrospinning. Two types of fibrous scaffolds were prepared and characterized. In the random scaffolds the fibers were arranged in a non-systematic fashion, but in the aligned scaffolds most of the fibers had the same direction. When cultured on the aligned scaffolds, HaCaT cells exhibited oriented actin fibers and had more elongated nuclei.

About the Authors

E. R. Pavlova
Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Russian Federation
1a Malaya Pirogovskaya ul., 119435, Moscow, Russian Federation


D. V. Bagrov
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology

1-12 Leninskiye Gory, 119234, Moscow, Russia



Yu. V. Khramova
Lomonosov Moscow State University
Russian Federation

Department of Embryology, School of Biology

1-12 Leninskiye Gory, 119234, Moscow, Russia



D. V. Klinov
Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Russian Federation
1a Malaya Pirogovskaya ul., 119435, Moscow, Russian Federation


K. V. Shaitan
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology

1-12 Leninskiye Gory, 119234, Moscow, Russia



References

1. Webster M., Witkin K.L., Cohen-Fix O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly // J. Cell Sci. 2009. Vol. 122. N 10. P. 1477–1486.

2. Versaevel M., Grevesse T., Gabriele S. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells // Nat. Commun. 2012. Vol. 3. Article number 671.

3. Lunova M., Zablotskii V., Dempsey N.M., Devillers T., Jirsa M., Syková E., Kubinová Š., Lunov O., Dejneka A. Modulation of collective cell behaviour by geometrical constraints // Integr. Biol. 2016. Vol. 8. N 11. P. 1099–1110.

4. Doyle A.D., Wang F.W., Matsumoto K., Yamada K.M. One-dimensional topography underlies three-dimensional fibrillar cell migration // J. Cell Biol. 2009. Vol. 184. N 4. P. 481–490.

5. Chen C. S., Mrksich M., Huang S., Whitesides G.M., Ingber D.E. Geometric control of cell life and death // Science. 1997. Vol. 276. N 5317. P. 1425–1428.

6. Gaharwar A.K., Nikkhah M., Sant S., Khademhosseini A. Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance // Biofabrication 2014. Vol. 7. N 1. Article number 15001.

7. Lamers E., Walboomers X.F., Domanski M., Prodanov L., Melis J., Luttge R., Winnubst L., Anderson J.M., Gardeniers H.J.G.E., Jansen J.A. In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates // Nanomed.: Nanotech., Biol. Med. 2012. Vol. 8. N 3. P. 308–317.

8. Norman J. J., Desai T.A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds // Ann. Biomed. Eng. 2006. Vol. 34. N 1. P. 89–101.

9. Ma Z., He W., Yong T., Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation // Tissue Eng. 2005. Vol. 11. N 7–8. P. 1149–1158.

10. Heo S.-J., Nerurkar N.L., Baker B.M., Shin J.-W., Elliott D.M., Mauck R.L. Fiber stretch and reorientation modulates mesenchymal stem cell morphology and fibrous gene expression on oriented nanofibrous microenvironments // Ann. Biomed. Eng. 2011. Vol. 39. N 11. P. 2780–2790.

11. Sill T.J., von Recum H.A. Electrospinning: applications in drug delivery and tissue engineering // Biomaterials. 2008. Vol. 29. N 13. P. 1989–2006.

12. Mo X. M., Xu C.Y., Kotaki M., Ramakrishna S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation // Biomaterials. 2004. Vol. 25. N 10. P. 1883–1890.

13. Hotaling N.A., Bharti K., Kriel H., Simon C. G. DiameterJ: A validated open source nanofiber diameter measurement tool // Biomaterials. 2015. Vol. 61. P. 327–338.

14. Rezakhaniha R., Agianniotis A., Schrauwen J.T.C., Griffa A., Sage D., Bouten C.V.C., van de Vosse F.N., Unser M., Stergiopulos N. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy // Biomech. Model. Mechanobiol. 2012. Vol. 11. N 3–4. P. 461–473.

15. Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles // Polymer. 2001. Vol. 42. N 1. P. 261–272.

16. Yang F., Murugan R., Wang S., Ramakrishna S. Electrospinning of nano/micro scale poly(l- lactic acid) aligned fibers and their potential in neural tissue engineering // Biomaterials. 2005. Vol. 26. N 15. P. 2603–2610.

17. Wang N., Tytell J.D., Ingber D.E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus // Nat. Rev. Mol. Cell Biol. 2009. Vol. 10. N 1. P. 75–82.

18. Lombardi M.L., Jaalouk D.E., Shanahan C.M., Burke B., Roux K.J., Lammerding J. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton // J. Biol. Chem. 2011. Vol. 286. N 30. P. 26743–26753.

19. Almeida F.V, Walko G., McMillan J.R., McGrath J.A., Wiche G., Barber A.H., Connelly J.T. The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes // J. Cell Sci. 2015. Vol. 128. N 24. P. 4475–4486.

20. Nathan A.S., Baker B.M., Nerurkar N.L., Mauck R.L. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds // Acta Biomater. 2011. Vol. 7. N 1. P. 57–66.

21. Badique F., Stamov D.R., Davidson P.M., Veuillet M., Reiter G., Freund J.N., Franz C. M., Anselme K. Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization // Biomaterials. 2013. Vol. 34. N 12. P. 2991–3001.

22. Davidson P.M., Fromigué O., Marie P.J., Hasirci V., Reiter G., Anselme K. Topographically induced self-deformation of the nuclei of cells: Dependence on cell type and proposed mechanisms // J. Mater. Sci. Mater. Med. 2010. Vol. 21. N 3. P. 939–946.

23. Khatau S.B., Hale C.M., Stewart-Hutchinson P.J., Patel M.S., Stewart C.L., Searson P.C., Hodzic D., Wirtz D. A perinuclear actin cap regulates nuclear shape // Proc. Natl. Acad. Sci. U. S. A. 2009. Vol. 106. N 45. P. 19017–19022.


Review

For citations:


Pavlova E.R., Bagrov D.V., Khramova Yu.V., Klinov D.V., Shaitan K.V. NUCLEI DEFORMATION IN HACAT KERATINOCYTES CULTIVATED ON ALIGNED FIBROUS SUBSTRATES. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(2):99-105. (In Russ.)

Views: 316


ISSN 0137-0952 (Print)