CARBON DIOXIDE EXCHANGE IN THE NEEDLES OF THE COMMON SPRUCE OF SOUTHERN TAIGA SPRUCE FORESTS
Abstract
The dynamics of carbon dioxide exchange in the common spruce (Picea abies L.) in relation to environmental factors was monitored for several seasons. A direct linear dependence of photosynthesis intensity on the levels of air temperature and illumination was established (the correlation coefficient was 0,860 (p <0.001) and 0,704 (p <0.001)). It was revealed that the seasonal maximum of net photosynthesis production was attained at temperatures of 23–25°C. A decrease in temperature optimum was associated with a reduced level of CO2 assimilation intensity. The impact of environmental factors on photosynthesis intensity was considered in terms of a model developed by us. Using the model, we demonstrated that the temperature and illumination dynamics in toto accounts for 82% of changes in photosynthesis intensity. It is the air temperature that exerts the strongest influence on the process of photosynthesis. According to our calculations, the net photosynthesis level was three times higher than the respiration level. This is indicative of a positive carbon dioxide balance in the needles of the common spruce.
About the Authors
A. K. YuzbekovRussian Federation
Department of General Ecology, School of Biology
Leninskie Gory, 1-12, Moscow, 119234, Russia
D. G. Zamolodchikov
Russian Federation
Department of General Ecology, School of Biology
Leninskie Gory, 1-12, Moscow, 119234, Russia
References
1. Dixon R.K., Solomon A.M., Brown S., Houghton R.A., Trexler M.C., Wisniewski J. Carbon pools and flux of global forest ecosystems // Science. 1994. Vol. 263. N 5144. P. 185–190.
2. Zamolodchikov D.G., Grabovskii V.I., Kraev G.N. A twenty year retrospective on the forest carbon dynamics in Russia // Contemp. Probl. Ecol. 2011. Vol. 4. N 7. P. 706–715.
3. Goodale C.L., Apps M.J., Birdsey R.A., Field C.B., Heath L.S., Houghton R.A., Jenkins J.C., Kohlmaier G.H., Kurz W., Liu S., Nabuurs G.-J., Nilsson S., Shvidenko A.Z. Forests carbon sinks in the Northern Hemisphere // Ecol. Appl. 2002 .Vol. 12. N 3. Р. 891–899.
4. Pan Y., Birdsey R.A., Fang J. et al. A large and persistent carbon sink in the world’s forests // Science. 2011. Vol. 333. N 6045. Р. 988–993.
5. Field C.B, Kaduk J. The carbon balance of an oldgrowth forest: building across approaches // Ecosystems. 2004. Vol. 7. N 5. Р. 525–533.
6. Luyssaert S., Schulze E.-D., Borner A., Knohl A., Hessenmoller D., Law B.E., Ciais P., Grace J. Old-growth forests as global carbon sinks // Nature. 2008. Vol. 455. N 7210. Р. 213–215.
7. Yuzbekov A.K., Zamolodchikov D.G., Ivashchenko A.I. Spruce fir photosynthesis in the forest ecosystems of the log Tayezhnyi test area // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 4. Р. 169–172.
8. Karelin D.V., Zamolodchikov D.G., Zukert N.V., Chestnykh O.V., Pochikalov A.V., Kraev G.N. Interannual changes in PAR and soil moisture during warm season may be more important than temperature fluctuations in directing annual carbon balance in Tundra // Biol. Bull. Rev. 2013. Vol. 3. N 5. Р. 371–387.
9. Gaumont-Guay D., Margolis H.A., Bigras F.J., Raulier F. Characterizing the frost sensitivity of black spruce photosynthesis during cold acclimation // Tree Physiol. 2003. Vol. 23. N 5. Р. 301–311.
10. Saunders M., Tobin B., Black K., Gioria M., Nieuwenhuis M., Osborne B.A. Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature- dependent // Agr. Forest Meteorol. 2012. Vol. 157. N 5. Р. 1–10.
11. Stinziano J.R., Hüner N.P.А., Way D.A. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies) // Tree Physiol. 2015. Vol. 35. N 12. P. 1303–1313.
12. Бобкова К.С., Тужилкина В.В. Углеродный цикл в еловых экосистемах // Коренные еловые леса севера: биоразнообразие, структура, функции / Под. ред. К.С. Бобковой, Э.П. Галенко. СПб: Наука, 2006. С. 265–288.
13. Щербатюк А.С., Русакова Л.В., Суворова Г.Г., Янькова Л.С. Углекислотный газообмен хвойных Предбайкалья. Новосибирск: Наука, 1991. 135 с.
14. Way D.A., Sage R.F. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P] // Plant Cell Environ. 2008. Vol. 31. N 9. Р. 1250–1262.
15. Суворова Г.Г., Янькова Л.С., Копытова Л.Д., Филиппова А.К. Максимальная интенсивность фотосинтеза сосны обыкновенной и ели сибирской в Предбайкалье // Сиб. экол. журн. 2005. № 1. С. 97–108.
16. Юзбеков А.К., Магомедов И.М. Влияние температуры на синтез карбоксилирующих ферментов в этиолированных листьях растений с С3 – и С4 – путем фотосинтеза на свету // Фотосинтез, дыхание и органические кислоты / Под ред. А.А. Землянухина, В.В. Полевого. Воронеж: Изд-во Воронеж. ун-та, 1980. С. 37–42.
17. Cannell M.G.R., Thornley J.H.M. Modelling the components of plant respiration: some guiding principles // Ann. Bot. 2000. Vol. 85. N 1. P.45–54.
Review
For citations:
Yuzbekov A.K., Zamolodchikov D.G. CARBON DIOXIDE EXCHANGE IN THE NEEDLES OF THE COMMON SPRUCE OF SOUTHERN TAIGA SPRUCE FORESTS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(2):106-112. (In Russ.)