Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

ВАКЦИНЫ ПРОТИВ РОТАВИРУСА: НОВЫЕ СТРАТЕГИИ И РАЗРАБОТКИ

Полный текст:

Аннотация

Ротавирусная инфекция – инфекционное заболевание, вызванное ротавирусами. Она является главной причиной тяжелых диарей у детей во всем мире и одним из факторов, определяющих детскую смертность. В настоящее время для вакцинации против ротавирусной инфекции используются только живые ослабленные (аттенуированные) вакцины. Данные вакцины эффективны, но обладают рядом побочных действий, прежде всего, риском возникновения инвагинации кишечника. Осложнения при применении существующих вакцин, как правило, связаны с пероральным введением препаратов и возникают в результате размножения ослабленных живых вакцин в кишечнике человека. В связи с этим, существует необходимость создания современных, эффективных и безопасных препаратов для борьбы с ротавирусной инфекцией, не способных размножаться (реплицироваться) в организме вакцинируемого. В последние годы стали активно разрабатываться и испытываться вакцины нового поколения против ротавирусной инфекции – рекомбинантные вакцины, в том числе, парентерального введения. При этом одной из проблем при создании таких вакцин является сложная антигенная структура ротавируса. В данном обзоре представлен анализ литературы о генетическом и антигенном разнообразии штаммов ротавирусов и географической локализации их эпидемически значимых вариантов. Обсуждаются роль капсидных белков в формировании иммунного ответа на вирус и современное состояние разработок новых кандидатных рекомбинантных вакцин против ротавирусной инфекции.

Об авторах

О. А. Кондакова
Московский государственный университет имени М.В. Ломоносова
Россия

Кафедра вирусологии, биологический факультет

Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12

канд. биол. наук, ст. науч. сотр. кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



Н. А. Никитин
Московский государственный университет имени М.В. Ломоносова
Россия

Кафедра вирусологии, биологический факультет

Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12

канд. биол. наук, зав. сектором прикладной фитовирусологии кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



Е. А. Трифонова
Московский государственный университет имени М.В. Ломоносова
Россия

Кафедра вирусологии, биологический факультет

Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12

канд. биол. наук, вед. науч. сотр. кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



И. Г. Атабеков
Московский государственный университет имени М.В. Ломоносова
Россия

Кафедра вирусологии, биологический факультет

Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12

докт. биол. наук, академик РАН, гл. науч. сотр. кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-55-34



О. В. Карпова
Московский государственный университет имени М.В. Ломоносова
Россия

Кафедра вирусологии, биологический факультет

Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12

докт. биол. наук, проф. кафедры вирусологии биологического факультета МГУ. Тел.: 8-495-939-53-67



Список литературы

1. Tate J.E., Burton A.H., Boschi-Pinto C., Parashar U.D., World Health Organization– Coordinated Global Rotavirus Surveillance Network, Agocs M., Serhan F., de Oliveira L., Mwenda J.M., Mihigo R., Ranjan Wijesinghe P. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013 // Clin. Infect. Dis. 2016. Vol. 62. Suppl. 2. P. S96–S105.

2. Parashar U.D., Gibson C.J., Bresee J.S., Glass R.I. Rotavirus and severe childhood diarrhea // Emerg. Infect. Dis. 2006. Vol. 12. N 2. P. 304–306.

3. Walker C.L., Rudan I., Liu L., Nair H., Theodoratou E., Bhutta Z.A., O’Brien K.L., Campbell H., Black R.E. Global burden of childhood pneumonia and diarrhea // Lancet. 2013. Vol. 381. N 9875. P. 1405–1416.

4. Desai R., Curns A.T., Steiner C.A., Tate J.E., Patel M.M., Parashar U.D. All-cause gastroenteritis and rotavirus-coded hospitalizations among US children 2000–2009 // Clin. Infect. Dis. 2012. Vol. 55. N 4. P. 28–34.

5. Burnett E., Jonesteller C.L., Tate J.E., Yen C., Parashar U.D. Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea // J. Infect Dis. 2017. Vol. 215. N 11. P. 1666–1672.

6. Jiang B., Genstch J.R., Glass R.I. Inactivated rotavirus vaccines: a priority for accelerated vaccine development // Vaccine. 2008. Vol. 26. N 52. P. 6754–6758.

7. Estes M.K., Kapikian A. Rotaviruses // Fields virology /Eds. D.M. Knipe, P.M. Howley, J.I. Cohen, D.E. Griffin, R.A. Lamb, M.A. Martin, V.R. Racaniello, and B. Roizman. Philadelphia: Lippincott Williams & Wilkins, 2007. P. 1917–1974.

8. Ciarlet M., Estes M.K. Rotaviruses: basic biology, epidemiology and methodologies // Encyclopedia of environmental microbiology / Eds. G. Bitton, D.L. Balkwill, R.S. Burlage, et al. N.Y.: John Wiley & Sons, 2003. P. 2573–2773.

9. Chen J.Z., Settembre E.C., Aoki S.T., Zhang X., Bellamy A.R., Dormitzer P.R., Harrison S.C., Grigorieff N. Molecular interactions in rotavirus assembly and uncoating seen by highresolution cryo-EM // Proc. Natl. Acad. Sci. U. S. A. 2009. Vol. 106. N 26. P. 10644–10648.

10. Jayaram H., Estes M.K., Prasad B.V. Emerging themes in rotavirus cell entry, genome organization, transcription and replication // Virus Res. 2004. Vol. 101. N 1. P. 67–81.

11. McClain B., Settembre E., Temple B.R., Bellamy A.R., Harrison S.C. X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution // J. Mol. Biol. 2010. Vol. 397. N 2. P. 587–599.

12. Settembre E.C., Chen J.Z., Dormitzer P.R, Grigorieff N., Harrison S.C. Atomic model of an infectious rotavirus particle Atomic model of an infectious rotavirus particle // EMBO J. 2011. Vol. 30. N 2. P. 408–416.

13. Mathieu M., Petitpas I., Navaza J, Lepault J, Kohli E, Pothier P., Prasad B.V., Cohen J., Rey F.A. Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion // EMBO J. 2001. Vol. 20. N 7. P. 1485–1497.

14. Long C.P., McDonald S.M. Rotavirus genome replication: Some assembly required // PLoS Pathog. 2017. Vol. 13. N 4. e1006242.

15. Matthijnssens J., Otto P.H., Ciarlet M., Desselberger U., Van Ranst M., Johne R. VP6- sequence-based cutoff values as a criterion for rotavirus species demarcation // Arch. Virol. 2012. Vol. 157. N 6. P. 1177–1182.

16. Estes M.K., Greenberg H.B. Rotaviruses // Fields Viro logy / Eds. D.M. Knipe and P. Howley. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013. P. 1347– 1395.

17. Mihalov-Kovacs E., Gellert A., Marton S., Farkas S.L., Feher E., Oldal M., Jakab F., Martella V., Banyai K. Candidate new rotavirus species in sheltered dogs, Hungary // Emerg. Infect. Dis. 2015. Vol. 21. N 4. P. 660–663.

18. Banyai K., Kemenesi G., Budinski I., Földes F., Zana B., Marton S., Varga-Kugler R., Oldal M., Kurucz K., Jakab F. Candidate new rotavirus species in Schreiber’s bats, Serbia // Infect. Genet. Evol. 2017. Vol. 48. P. 19–26.

19. Matthijnssens J., Martella V., Van Ranst M. Priority paper evaluation: genomic evolution, host-species barrier, reassortment and classification of rotaviruses // Future Virol. 2010. Vol. 5. N 4. P. 385–390.

20. Desselberger U., Wolleswinkel-van den Bosch J., Mrukowicz J., Rodrigo C., Giaquinto C., Vesikari T. Rotavirus types in Europe and their significance for vaccination // Pediatr. Infect. Dis. J. 2006. Vol. 25. N 1. P. S30–S41.

21. Gray J., Vesikari T., Van Damme P., Giaquinto C., Mrukowicz J., Guarino A., Dagan R., Hania S., Vytautas U. Rotavirus // J. Pediatr. Gastroenterol. 2008. Vol. 46. Suppl. 2. P. S24–S31.

22. Tang B., Gilbert J.M., Matsui S.M., Greenberg H.B. Comparison of th e rotavirus gene 6 from different species by sequence analysis and localization of subgroup-specific epitopes using site-directed mutagenesis // Virology. 1997. Vol. 237. N 1. P. 89–96.

23. Hoshino Y., Kapikian A.Z. Classification of rotavirus VP4 and VP7 serotypes // Arch. Virol. Suppl. 1996. Vol. 12. P. 99–111.

24. Matthijnssens J., Ciarlet M., McDonald S.M. et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG) // Arch. Virol. 2011. Vol. 156. N 8. P. 1397–1413.

25. Trojnar E., Sachsenroder J., Twardziok S., Reetz J., Otto P.H., Johne, R. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses // J. Gen. Virol. 2013. Vol. 94. N 1. P. 136–142.

26. Bányai K., László B., Duque J., Steele A.D., Nelson E.A., Gentsch J.R., Parashar U.D. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs // Vaccine. 2012. Vol. 30. Suppl. 1. P. A122–A130.

27. Dóró R., László B., Martella V., Leshem E., Gentsch J., Parashar U., Banyai K. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure? // Infect. Genet. Evol. 2014. Vol. 28. P. 446–461.

28. Santos N., Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine // Rev. Med. Virol. 2005. Vol. 15. N 1. P. 29–56.

29. Matthijnssens J., Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans // Curr. Opin. Virol. 2012. Vol. 2. N 4. P. 426–433.

30. Chiba S., Yokoyama T., Nakata S., Morita Y., Urasawa T., Taniguchi K., Urasawa S., Nakao T. Protective effect of naturally acquired homotypic and heterotypic rotavirus antibodies // Lancet. 1986. Vol. 2. N 8504. P. 417–421.

31. Gorrell R.J., Bishop R.F. Homotypic and heterotypic serum neutralizing antibody response to rotavirus proteins following natural primary infection and reinfection in children // J. Med. Virol. 1999. Vol. 57. N 2. P. 204–211.

32. Arias C.F., López S., Mascarenhas J.D., Romero P., Cano P., Gabbay Y.B., de Freitas R.B., Linhares A.C. Neutralizing antibody immune response in children with primary and secondary rotavirus infections // Clin. Diagn. Lab. Immunol. 1994. Vol. 1. N 1. P. 89–94.

33. Hu L., Crawford S.E, Czako R. Cortes-Penfield N.W., Smith D.F., Le Pendu J., Estes M.K., Prasad B.V. Cell attachment protein VP8* of a human rotavirus specifically interacts with A- type histo-blood group antigen // Nature. 2012. Vol. 485. N 7397. P. 256–259.

34. Huang P., Xia M., Tan M., Zhong W., Wei C., Wang L., Morrow A., Jiang X. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner // J. Virol. 2012. Vol. 86. N 9. P. 4833–4843.

35. Ramani S., Cortes-Penfield N.W., Hu L., Crawford S.E. Czako R., Smith D.F., Kang G., Ramig R.F., Le Pendu J., Prasad B.V., Estes M.K. The VP8* domain of neonatal rota-virus strain G10P[11] binds to type II precursor glycans // J. Virol. 2013. Vol. 87. N 13. P. 7255–7264.

36. Fleming F.E., Graham K.L., Taniguchi K., Takada Y., Coulson B.S. Rotavirus.neutralizing antibodies inhibit virus binding to integrins alpha 2 beta 1 and alpha 4 beta 1 // Arch. Virol. 2007. Vol. 152. N 6. P. 1087–1101.

37. Dyall-Smith M.L., Lazdins I., Tregear G.W., Holmes I.H. Location of the major antigenic sites involved in rotavirus serotype- specific neutralization // Proc. Natl. Acad. Sci. U.S.A. 1986. Vol. 83. N 10. P. 3465–3468.

38. Larralde G., Li B.G., Kapikian A.Z., Gorziglia M. Serotype-specific epitope(s) present on the VP8 subunit of rotavirus VP4 protein // J. Virol. 1991. Vol. 65. N 6. P. 3213–3218.

39. Kovacs-Nolan J., Yoo D., Mine Y. Fine mapping of sequential neutralization epitopes on the subunit protein VP8 of human rotavirus // Biochem. J. 2003. Vol. 376. N 1. P. 269–275.

40. Taniguchi K., Maloy W.L., Nishikawa K., Green K.Y., Hoshino Y., Urasawa S., Kapikian A.Z., Chanock R.M., Gorziglia M. Identification of cross-reactive and serotype 2-specific neutralization epitopes on VP3 of human rotavirus // J. Virol. 1988. Vol. 62. N 7. P. 2421–2426.

41. Coulson B.S., Kirkwood C. Relation of VP7 amino acid sequence to monoclonal antibody neutralization of rotavirus and rotavirus monotype // J. Virol. 1991. Vol. 65. N 11. P. 5968–5974.

42. Angel J., Franco M.A., Greenberg H.B. Rotavirus immune responses and correlates of protection // Curr. Opin. Virol. 2012. Vol. 2. N 4. P. 419–425.

43. Svensson L., Sheshberadaran H., Vene S., Norrby E., Grandien M., Wadell G. Serum antibody responses to individual viral polypeptides in human rotavirus infections // J. Gen. Virol. 1987. Vol. 68. N 3. P. 643–651.

44. Weitkamp J.H., Kallewaard N., Kusuhara K., Bures E., Williams J.V., LaFleur B., Greenberg H. B., Crowe J.E. Infant and adult human B cell responses to rotavirus share common immunodominant variable gene repertoires // J. Immunol. 2003. Vol. 171. N 9. P. 4680–4688.

45. Weitkamp J.H., Kallewaard N.L., Bowen A.L., Lafleur B.J., Greenberg H.B., Crowe J.E. VH1-46 is the dominant immunoglobulin heavy chain gene segment in rotavirus-specific memory B cells expressing the intestinal homing receptor alpha4beta7 // J. Immunol. 2005. Vol. 174. N 6. P. 3454–3460.

46. Nair N., Newell E.W., Vollmers C., Quake S.R., Morton J.M., Davis M.M., He X.S., Greenberg H.B. High-dimensional immune profiling of total and rotavirus VP6-specific intestinal and circulating B cells by mass cytometry // Mucosal Immunol. 2016. Vol. 9. N 1. P. 68–82.

47. Aiyegbo M.S., Sapparapu G., Spiller B.W., Eli I.M., Williams D.R., Kim R., Lee D.E., Liu T., Li S., Woods V.L.Jr, Nannemann,D.P., Meiler J., Stewart P.L., Crowe J.E.Jr. Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore // PLoS One. 2013. Vol. 8. N 5. e61101.

48. Gilger M.A., Matson D.O., Conner M.E., Rosenblatt H.M., Finegold M.J., Estes M.K. Extraintestinal rotavirus infections in children with immunodeficiency // J. Pediatr. 1992. Vol. 120. N 6. P. 912–917.

49. Blutt S.E., Warfield K.L., Estes M.K., Conner M.E. Differential requirements for T cells in viruslike particleand rotavirus-induced protective immunity // J. Virol. 2008. Vol. 82. N 6. P. 3135–3138.

50. McNeal M.M., VanCott J.L., Choi A.H., Basu M., Flint J.A., Stone SC., Clements J.D., Ward R.L. CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT(R192G) // J. Virol. 2002. Vol. 76. N 2. P. 560–568.

51. McNeal M.M., Basu M., Bean J.A., Clements J.D., Choi A.H., Ward R.L. Identification of an immunodominant CD4+ T cell epitope in the VP6 protein of rotavirus following intranasal immunization of BALB/c mice // Virology. 2007. Vol. 363. N 2. P. 410–418.

52. Zhao W., Pahar B., Sestak K. Identification of rotavirus VP6-specific CD4+ T cell epitopes in a G1P[8] human rotavirus-infected rhesus macaque // Virology (Auckl). 2008. Vol. 1. P. 9–15.

53. Defo Z.K., Lee B. New approaches in oral rotavirus vaccines // Crit. Rev. Microbiol. 2016. Vol. 42. N 3. P. 495–505.

54. Jonesteller C.L., Burnett E., Yen C., Tate J.E., Parashar U.D. Effectiveness of Rotavirus Vaccination: A systematic review of the first decade of global post-licensure data, 2006– 2016 // Clin. Infect. Dis. 2017. Vol. 65. N 5. P. 840–850.

55. Weintraub E.S., Baggs J., Duffy J., Vellozzi C., Belon - gia E.A., Irving S., Klein N.P., Glanz J.M., Jacobsen S.J., Naleway A., Jackson L.A., DeStefano F. Risk of intussusception after monovalent rotavirus vaccination // N. Engl. J. Med. 2014. Vol. 370. N 6. P. 513–519.

56. Carlin J.B., Macartney K.K., Lee K.J., Quinn H.E., Buttery J., Lopert R., Bines J., McIntyre P.B. Intussusception risk and disease prevention associated with rotavirus vaccines in Australia’s national immunization program // Clin. Infect. Dis. 2013. Vol. 57. N 10. P. 1427–1434.

57. Haber P., Patel M., Pan Y., Baggs J., Haber M., Museru O., Yue X., Lewis P., Destefano F., Parashar U.D. Intussusception after rotavirus vaccines reported to US VAERS, 2006–2012 // Pediatrics. 2013. Vol. 131. N 6. P. 1042–1049.

58. Koch J., Harder T., von Kries R., Wichmann O. Risk of intussusception after rotavirus vaccination. A systematic literature review and meta-analysis // Dtsch. Arztebl. Int. 2017. Vol. 114. N 15. P. 255–262.

59. Simonsen L., Vlboud C., Elixhauser A., Taylor R.J., Kapikian A.Z. More on Rota Shield and intussusception: the role of age at the time of vaccination // J. Infect. Dis. 2005. Vol. 192. Suppl. 1. P. S36–S43.

60. Boom J.A., Sahni L.C., Payne D.C., Gautam R., Lyde F., Mijatovic-Rustempasic S., Bowen M.D., Tate J.E., Rench M.A., Gentsch J.R., Parashar U.D., Baker C.J. Symptomatic infection and detection of vaccine and vaccine-reassortant rotavirus strains in 5 children: a case series // J. Infect. Dis. 2012. Vol. 206. N 8. P. 1275–1279.

61. Hemming M., Vesikari T. Vaccine-derived humanbovine double reassortant rotavirus in infants with acute gastroenteritis // Pediatr. Infect. Dis. J. 2012. Vol. 31. N 9. P. 992–994.

62. Donato C.M., Ch’ng L.S., Boniface K.F., Crawford N.W., Buttery J.P., Lyon M, Bishop R.F., Kirkwood C.D. Identification of strains of RotaTeq rotavirus vaccine in infants with gastroenteritis following routine vaccination // J. Infect. Dis. 2012. Vol. 206. N 3. P. 377–383.

63. Victoria J.G., Wang C., Jones M.S., Jaing C., Mc-Loughlin K., Gardner S, Delwart E.L. Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus // J.Virol. 2010. Vol. 84. N 12. P. 6033–6040.

64. McClenahan S.D., Krause P.R., Uhlenhaut C. Molecular and infectivity studies of porcine circovirus in vaccines // Vaccine. 2011. Vol. 29. N 29–30. P. 4745–4753.

65. Patel M., Shane A.L., Parashar U.D., Jiang B., Gentsch J.R., Glass R.I. Oral rotavirus vaccines: how well will they work where they are needed most? // J. Infect. Dis. 2009. Vol. 200. Suppl. 1. P. S39–S48.

66. Glass R.I., Parashar U., Patel M., Gentsch J., Jiang B. Rotavirus vaccines: successes and challenges // J. Infect. 2014. Vol. 68. Suppl. 1. P. S9–S18.

67. Gentsch J.R., Laird A.R., Bielfelt B., Griffin D.D., Banyai K, Ramachandran M., Jain V., Cunliffe N.A., Nakagomi O., Kirkwood C.D., Fischer T.K., Parashar U.D., Bresee J.S., Jiang B., Glass R.I. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs // J. Infect. Dis. 2005. Vol. 192. Suppl. 1. P. S146–S159.

68. Xie L., Yan M., Wang X., Ye J., Mi K., Yan S., Niu X., Li H., Sun M. Immunogenicity and efficacy in mice of an adenovirus- based bicistronic rotavirus vaccine expressing NSP4 and VP7 // Virus Res. 2015. Vol. 210. P. 298–307.

69. Girard A., Roques E., Massie B., Archambault D. Flagellin in fusion with human rotavirus structural proteins exerts an adjuvant effect when delivered with replicating but non- disseminating adenovectors through the intrarectal route // Mol. Biotechnol. 2014. Vol. 56. N 5. P. 394–407.

70. Perez C.A., Eichwald C., Burrone O., de Mendoza D. Rotavirus VP7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice // J. Applied Microbiol. 2005. Vol. 99. N 5. P. 1158–1164.

71. Marelli B., Perez A. R., Banchio C, de Mendoza D., Magni C. Oral immunization with live Lactococcus lactis expressing rotavirus VP8* subunit induces specific immune response in mice // J. Virol. Methods. 2011. Vol. 175. N 1. P. 28–37.

72. Li Y., Ma G., Li G., Qiao X., Ge J., Tang L., Liu M., Liu L. Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production // J. Biomed. Biotechnol. 2010. Vol. 2010. Article ID 708460.

73. Esteban L.E., Temprana C.F., Argüelles M. H., Glikmann G., Castello A.A. Antigenicity and immunogenicity of rotavirus VP6 protein expressed on the surface of Lactococcus lactis // Biomed. Res. Int. 2013. Vol. 2013. Article ID 298598.

74. Herrmann J.E., Chen S.C., Jones D.H., Tinsley-Bown A., Fynan E.F., Greenberg H.B., Farrar G.H. Immune responses and protection oral immunization with rotavirus obtained by VP4 and VP7 DNA vaccines encapsulated in microparticles // Virology. 1999. Vol. 259. N 1. P. 148–153.

75. Herrmann J.E., Chen S.C., Fynan E.F., Santoro J.C., Greenberg H.B., Robinson H.L. DNA vaccines against rotavirus infections // Arch. Virol. Suppl. 1996. Vol. 12. P. 207–215.

76. Herrmann J.E., Chen S.C., Fynan E.F., Santoro J.C., Greenberg H.B., Wang S., Robinson H.L. Protection against rotavirus infections by DNA vaccination // J. Infect. Dis. 1996. Vol. 174. Suppl. 1. P. S93–S97.

77. Chen S.C., Fynan E.F., RobinsonH.L., Lu S., Greenberg H.B., Santoro J.C., Herrmann J.E. Protective immunity induced by rotavirus DNA vaccines // Vaccine. 1997. Vol. 15. N 8. P. 899–902.

78. Yang K., Wang S., Chang K.O., Lu S., Saif L.J., Greenberg H.B., Brinher J.P., Herrmann J.E. Immune responses and protection obtained with rotavirus VP6 DNA vaccines given by intramuscular injection // Vaccine. 2001. Vol. 19. N 23–24. P. 3285–3291.

79. Yuan l., Azevedo M.S., Gonzalez A.M., Jeong K.I., Van Nquyen T., Lewis P., Iasef C., Herrmann J.E., Saif L.J. Mucosal and systemic antibody responses and protection induced by a prime/boost rotavirus-DNA vaccine in a gnotobiotic pig model // Vaccine. 2005. Vol. 23. N 30. P. 3925–3936.

80. Chen S.C., Jones D.H., Fynan E.F., Farrar G.H., Clegg J.C., Greenberg H.B., Herrmann J.E. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles // J. Virol. 1998. Vol. 72. N 7. P. 5757–5761.

81. Chen S.C., Fynan E.F., Greenberg H.B., Herrmann J.E. Immunity obtained by gene-gun inoculation of a rotavirus DNA vaccine to the abdominal epidermis or anorectal epithelium // Vaccine. 1999. Vol. 17. N 23–24. P. 3171–3176.

82. Pêra F.F., Mutepfa D.L., Khan A.M., Els J.H., Mbewana S., van Dijk A.A., Rybicki E.P., Hitzeroth I.I. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana // Virol. J. 2015. Vol. 12. N 1: 205.

83. González S.A., Affranchino J.L. Assembly of doublelayered virus-like particles in mammalian cells by coexpression of human rotavirus VP2 and VP6 // J. Gen. Virol. 1995. Vol. 76. N 9. P. 2357–2360.

84. Agnello D., Hervé C.A., Lavaux A., Darniot M., Guillon P., Charpilienne A., Pothier P. Intrarectal immunization with rotavirus 2/6 virus-like particles induces an antirotavirus immune response localized in the intestinal mucosa and protects against rotavirus infection in mice // J. Virol. 2006. Vol. 80. N 8. P. 3823–3832.

85. Bertolotti-Ciarlet A., Ciarlet M., Crawford S.E., Conner M.E., Estes M.K .Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice // Vaccine. 2003. Vol. 21. N 25–26. P. 3885–3900.

86. Crawford S.E., Estes M.K., Ciarlet M., Barone C., O’Neal C.M., Cohen J., Conner M.E. Heterotypic protection and induction of a broad heterotypic neutralization response by rotavirus-like particles // J. Virol. 1999. Vol. 73. N 6. P. 4813–4822.

87. Fromantin C., Jamot B., Cohen J., Piroth L., Pothier P., Kohli E. Rotavirus 2/6 virus-like particles administered intranasally in mice, with or without the mucosal adjuvants cholera toxin and Escherichia coli heat-labile toxin, induce a Th1/Th2-like immune response // J. Virol. 2001. Vol. 75. N 22. P. 11010–11016.

88. Istrate C., Hinkula J., Charpilienne A., Poncet D., Cohen J., Svensson L., Johansen K. Parenteral administration of RF 8-2/6/7 rotavirus-like particles in a one-doseregimen induce protective immunity in mice // Vaccine. 2008. Vol. 26. N 35. P. 4594–4601.

89. Lappalainen S., Tamminen K., Vesikari T., Blazevic V. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles // Hum. Vaccin. Immunother. 2013. Vol. 9. N 9. P. 1991–2001.

90. Azevedo M, Viasova A, Saif L. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease // Expert Rev. Vaccines. 2013. Vol. 12. N 2. P. 169–181.

91. El-Attar L., Oliver S.L., Mackie A., Charpilienne A., Poncet D., Cohen J., Bridger J.C. Comparison of the efficacy of rotavirus VLP vaccines to a live homologous rotavirus vaccine in a pig model of rotavirus disease // Vaccine. 2009. Vol. 27. N 24. P. 3201–3208.

92. Shuttleworth G., Eckery D.C., Awram P. Oral and intraperitoneal immunization with rotavirus 2/6 virus-like particles stimulates a systemic and mucosal immune response in mice // Arch. Virol. Vol. 150. N 2. P. 341–349.

93. Tan M., Huang P., Xia M., Fang P.A., Zhong W., McNeal M., Wei C., Jiang W., Jiang X. Norovirus P particle, a novel platform for vaccine development and antibody production // J. Virol. 2011. Vol. 85. N 2. P. 753–764.

94. Wang L, Xia M, Huang P., Fang H., Cao D., Meng X., McNeal M., Jiang X., Tan M. Branched- linear and agglomerate protein polymers as vaccine platforms // Biomaterials. 2014. Vol. 35. N 29. P. 8427–8438.

95. Tekewe A., Fan Y., Tan E., Middelberg A.P, Lua L.H. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen // Biotechnol. Bioeng. 2017. Vol. 114. N 2. P. 397–406.

96. Choi A.H., McNeal M.M., Flint J.A., Basu M., Lycke N.Y., Clements J.D., Bean J.A., Davis H.L., McCluskie M.J., Van- Cott J.L., Ward R.L. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant // Vaccine. 2007. Vol. 20. N 13–14. P. 1733–1740.

97. McNeal M.M., Basu M., Bean J.A., Clements J.D., Lycke N.Y., Ramne A., Löwenadler B., Choi A.H., Ward R.L. Intrarectal immunization of mice with VP6 and either LT(R192G), or CTA1-DD as adjuvant protects against fecal rotavirus shedding after EDIM challenge // Vaccine. 2002. Vol. 25. N 33. P. 6224–6231.

98. Духовлинов И.В., Богомолова Е.Г., Федорова Е.А., Симбирцев А.С. Исследование протективной активности кандидатной вакцины против ротавирусной инфекции на основе рекомбинантного белка FliCVP6VP8 // Мед. иммунол. 2016. Т. 18. № 5. С 417–424.

99. Fix A.D., Harro C., McNeal M., Dally L., Flores J., Robertson G., Boslego J.W., Cryz S. Safety and immunogenicity of a parenterally administered rotavirus VP8 subunit vaccine in healthy adults // Vaccine. 2015. Vol. 33. N 31. P. 3766–3772.

100. Groome M.J., Koen A., Fix A., Page N., Jose L., Madhi S.A., McNeal M., Dally L., Cho I., Power M., Flores J., Cryz S. Safety and immunogenicity of a parenteral P2- VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa: a randomised, double-blind, placebo-controlled trial // Lancet Infect. Dis. 2017. Vol. 17. N 8. P. 843–853.


Для цитирования:


Кондакова О.А., Никитин Н.А., Трифонова Е.А., Атабеков И.Г., Карпова О.В. ВАКЦИНЫ ПРОТИВ РОТАВИРУСА: НОВЫЕ СТРАТЕГИИ И РАЗРАБОТКИ. Вестник Московского университета. Серия 16. Биология. 2017;72(4):199-208.

For citation:


Kondakova O.A., Nikitin N.A., Trifonova E.A., Atabekov J.G., Karpova O.V. ROTAVIRUS VACCINES: NEW STRATEGIES AND APPROACHES. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(4):199-208. (In Russ.)

Просмотров: 193


ISSN 0137-0952 (Print)