Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

COMPARATIVE STUDY OF THE THERMAL REMODELLING OF VIRUSES WITH ICOSAHEDRAL AND HELICAL SYMMETRY

Abstract

Study of the possibilities of virions and viral proteins modifications and structural remodelling is an important problem of the modern molecular virology. The method of thermal transformation of tobacco mosaic virus rod-like virions in structurally modified spherical particles, consisting of viral coat protein, was developed in our laboratory. These particles have unique adsorption and immunogenic properties. We developed a new candidate vaccine against rubella virus based on structurally modified spherical particles. Later we demonstrated the possibility of thermal remodelling of potato virus X filamentous virions. The present work is devoted to a comparative study of the thermal remodelling of viruses with different structure, belonging to various taxonomic groups. The formation of structurally modified spherical particles was shown during thermal treatment of rod-like virions with a helical symmetry (dolichos enation mosaic virus, barley stripe mosaic virus). The dependence of the sizes of the spherical particles (formed from dolichos enation mosaic virus) on the initial concentration of the virus was revealed. The process of thermal remodelling of alternanthera mosaic virus filamentous virions and virus-like particles was studied. Morphological changes of plant viruses with icosahedral symmetry were not observed during thermal treatment.

About the Authors

E. A. Trifonova
Lomonosov Moscow State University
Russian Federation

Department of Virology, Faculty of Biology

Leninskiye gory 1–12, Moscow, 119234, Russia



N. A. Nikitin
Lomonosov Moscow State University
Russian Federation

Department of Virology, Faculty of Biology

Leninskiye gory 1–12, Moscow, 119234, Russia



M. V. Arkhipenko
Lomonosov Moscow State University
Russian Federation

Department of Virology, Faculty of Biology

Leninskiye gory 1–12, Moscow, 119234, Russia



E. K. Donchenko
Lomonosov Moscow State University
Russian Federation

Department of Virology, Faculty of Biology

Leninskiye gory 1–12, Moscow, 119234, Russia



J. G. Atabekov
Lomonosov Moscow State University
Russian Federation

Department of Virology, Faculty of Biology

Leninskiye gory 1–12, Moscow, 119234, Russia



O. V. Karpova
Lomonosov Moscow State University
Russian Federation

Department of Virology, Faculty of Biology

Leninskiye gory 1–12, Moscow, 119234, Russia



References

1. Atabekov J., Nikitin N., Arkhipenko M., Chirkov S., Karpova O. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles // J. Gen. Virol. 2011. Vol. 92. N 2. P. 453–456.

2. Nikitin N.A., Malinin A.S., Rakhnyanskaya A.A., Trifonova E.A., Karpova O.V., Yaroslavov A.A., Atabekov J.G. Use of a polycation spacer for noncovalent immobilization of albumin on thermally modified virus particles // Polym. Sci. Ser. A. 2011. Vol. 53. N 11. P. 1026–1031.

3. Karpova O., Nikitin N., Chirkov S., Trifonova E., Sheve leva A., Lazareva E., Atabekov J. Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platform and foreign antigens // J. Gen. Virol. 2012. Vol. 93. N 2. P. 400–407.

4. Dobrov E.N., Nikitin N.A., Trifonova E.A., Parshina E. Yu., Makarov V.V., Maksimov G.V., Karpova O.V., Atabekov J.G. β-structure of the coat protein subunits in spherical particles generated by tobacco mosaic virus thermal denaturation // J. Biomol. Struct. Dyn. 2014. Vol. 32. N 5. P. 701–708.

5. Trifonova E., Nikitin N., Gmyl A., Lazareva E., Karpova O., Atabekov J. Complexes assembled from TMV-derived spherical particles and entire virions of heterogeneous nature // J. Biomol. Struct. Dyn. 2014. Vol. 32. N 8. P. 1193–1201.

6. Trifonova E.A., Nikitin N.A., Kirpichnikov M.P., Karpova O.V., Atabekov J.G. Obtaining and characterization of spherical particles – new biogenic platforms // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N. 4. P. 194–197.

7. Atabekov J.G., Nikitin N.A., Karpova O.V. New type of platforms for in vitro vaccine assembly // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 177–183.

8. Nikitin N., Trifonova E., Karpova O., Atabekov J. Examination of biologically active nanocomplexes by nanoparticle tracking analysis // Microsc. Microanal. 2013. Vol. 19. N 4. P. 808–813.

9. Nikitin N.A., Malinin A.S., Trifonova E.A., Rakhnyanskaya A.A., Yaroslavov A.A., Karpova O.V., Atabekov J.G. Proteins immobilization on the surface of modified plant viral particles coated with hydrophobic polycations // J. Biomat. Sci. Polym. Ed. 2014. Vol. 25. N 16. P. 1743–1754.

10. Bruckman M.A., Czapar A.E., VanMeter A., Randolph L.N., Steinmetz N.F. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer // J. Control. Release. 2016. Vol. 231. P. 103–113.

11. Trifonova E.A., Zenin V.A., Nikitin N.A., Yurkova M.S., Ryabchevskaya E.M., Putlyaev E.V., Donchenko E.K., Kondakova O.A., Fedorov A.N., Atabekov J.G., Karpova O.V. Study of rubella candidate vaccine based on a structurally modified plant virus // Antiviral Res. 2017. Vol. 144. P. 27–33.

12. Nikitin N., Ksenofontov A., Trifonova E., Arkhipenko M., Petrova E., Kondakova O., Kirpichnikov M., Atabekov J., Dobrov E., Karpova O. Thermal conversion of filamentous potato virus X into spherical particles with different properties from virions // FEBS Lett. 2016. Vol. 590. N 10. P. 1543–1551.

13. Atabekov J., Dobrov E., Karpova O., Rodionova N. Potato virus X: structure, disassembly and reconstitution // Mol. Plant Pathol. 2007. Vol. 8. N 5. P. 667–675.

14. Descriptions of Plant Viruses (DPV) [Электронный ресурс]. 1975. Дата обновления: 08.2013. URL: http://www.dpvweb.net/ (дата обращения: 16.07.2017).

15. Clare D.K., Pechnikova E.V., Skurat E.V., Makarov V.V., Sokolova O.S., Solovyev A.G., Orlova E.V. Novel inter-subunit contacts in barley stripe mosaic virus revealed by cryo-electron microscopy // Structure. 2015. Vol. 23. N 10. P. 1815–1826.

16. Mukhamedzhanova A.A., Smirnov A.A., Arkhipenko M.V., Ivanov P.A., Chirkov S.N., Rodionova N.P., Karpova O.V., Atabekov J.G. Characterization of Alternanthera mosaic virus and its coat protein // Open Virol. J. 2011. Vol. 5. P. 136–140.

17. Karasev A.V., Chirkov S.N., Kaftanova A.S., Miroshnichenko N.A., Surgucheva N.A., Fedotina V.L. Characterization of bean mild mosaic virus: particle morpho logy, composition and RNA cell-free translation // Intervirology. 1989. Vol. 30. N 5. P. 285–293.

18. Yasaka R., Nguyen H.D., Simon Y.W.H., Duchêne S., Korkmaz S., Katis N., Takahashi H., Gibbs A.J., Ohshima K. The temporal evolution and global spread of cauliflower mosaic virus a plant pararetrovirus // PLoS One. 2014. Vol. 9. N 1. e85641.

19. Kassanis B., McCarthy D. The quality of virus as affected by the ambient temperature // J. Gen. Virol. 1967. Vol. 1. N 4. P. 425–440.

20. Nikitin N., Trifonova E., Evtushenko E., Kirpichnikov M., Atabekov J., Karpova O. Comparative study of non-enveloped icosahedral viruses size // PLoS One. 2015. Vol. 10. N 11. e0142415.

21. Stubbs G., Parker L., Junn J., Kendall A. Flexible filamentous virus structures from fiber diffraction // Fibre Diffraction Rev. 2005. Vol. 13. N 2. P. 38–42.

22. Silver S., Quan S., Deom M. Completion of the nucleotide sequence of sunn-hemp mosaic virus: a tobamovirus pathogenic to legumes // Virus Genes. 1996. Vol. 13. N 1. P. 83–85.

23. Hafez E.E., Abdel Aleem E.E., Fattouh F.A. Comparison of barley stripe mosaic virus strains // Z. Naturforsch C. 2008. Vol. 63. N 3–4. P. 271–276.

24. Solovyev A.G., Makarov V.V. Helical capsids of plant viruses: architecture with structural lability // J. Gen. Virol. 2016. Vol. 97. N 8. P. 1739–1754.


Review

For citations:


Trifonova E.A., Nikitin N.A., Arkhipenko M.V., Donchenko E.K., Atabekov J.G., Karpova O.V. COMPARATIVE STUDY OF THE THERMAL REMODELLING OF VIRUSES WITH ICOSAHEDRAL AND HELICAL SYMMETRY. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(4):209-214. (In Russ.)

Views: 337


ISSN 0137-0952 (Print)