Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

BIORESORBABLE SCAFFOLDS BASED ON FIBROIN FOR BONE TISSUE REGENERATION

Abstract

The use of tissue-engineering constructs based on scaffolds that imitate the extracellular matrix of living tissue unveils new opportunities in the treatment of various pathologies and injuries associated with tissue and organ damage. Silk fibroin of silkworm Bombyx mori is a biocompatible and bioresorbable polymer with high mechanical strength and elasticity. These features allow creating scaffolds on its basis for regeneration of various tissues,  including bone tissue. In the present work fibroin scaffolds were obtained in form of porous sponges, films and hybrid scaffolds. The last ones are bilayer structures in which the porous sponges intrinsic three-dimensional structure is limited on the one side by the film. The structure of scaffolds and their biocompatibility was studied. The tests showed that immortalized and primary fibroblasts, as well as osteoblast-like cells, successfully adhere and proliferate on the surface of the studied scaffolds. Numerous osteogenesis foci were observed in the implant region in the in vivo experiments on the rat femoral bone defect model four weeks after the implantation of the fibroin porous scaffold. These results indicate the osteoconduction of the scaffolds.

About the Authors

M. S. Kotliarova
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering

Leninskiye gory 1-12, Moscow, 119234, Russia



A. Yu. Arkhipova
Lomonosov Moscow State University
Russian Federation

Laboratory of Confocal Microscopy, School of Biology

Leninskiye gory 1-12, Moscow, 119234, Russia



A. M. Moysenovich
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering

Leninskiye gory 1-12, Moscow, 119234, Russia



D. A. Kulikov
M.F. Vladimirsky Moscow Regional Research and Clinical Institute
Russian Federation
Shchepkina ul. 61/2–1, Moscow, 129110, Russia


A. V. Kulikov
Institute of Theoretical and Experimental Biophysics of Russian. Academy of Sciences
Russian Federation

Institutskaya ul. 3, Pushino, 142290, Moscow region, Russia



A. S. Kon’kov
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering

Leninskiye gory 1-12, Moscow, 119234, Russia



M. A. Bobrov
M.F. Vladimirsky Moscow Regional Research and Clinical Institute
Russian Federation
Shchepkina ul. 61/2–1, Moscow, 129110, Russia


I. I. Agapov
Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation
Russian Federation
Shchukinskaya ul. 1, Moscow, 113182, Russia


M. M. Moisenovich
Lomonosov Moscow State University
Russian Federation

Laboratory of Confocal Microscopy, School of Biology

Leninskiye gory 1-12, Moscow, 119234, Russia



A. V. Molochkov
M.F. Vladimirsky Moscow Regional Research and Clinical Institute
Russian Federation
Shchepkina ul. 61/2–1, Moscow, 129110, Russia


A. V. Goncharenko
Lomonosov Moscow State University
Russian Federation

Laboratory of Confocal Microscopy, School of Biology

Leninskiye gory 1-12, Moscow, 119234, Russia



K. V. Shaitan
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering

Leninskiye gory 1-12, Moscow, 119234, Russia



References

1. Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration // Eur. Spine J. 2001. Vol. 10, suppl. 2. P. S96–S101.

2. Schroeder J.E., Mosheiff R. Tissue engineering approaches for bone repair: concepts and evidence // Injury. 2011. Vol. 42. N 6. P. 609–613.

3. Fillingham Y., Jacobs J. Bone grafts and their substitutes // Bone Joint J. 2016. Vol. 98, suppl. A. P. 6–9.

4. Miron R.J., Zhang Y.F. Osteoinduction: a review of old concepts with new standards. // J. Dent. Res. 2012. Vol. 91. N 8. P. 736–744.

5. Laurencin C., Khan Y., El-Amin S.F. Bone graft substitutes // Expert Rev. Med. Devices. 2006. Vol. 3. N 1. P. 49–57.

6. Wu S., Liu X., Yeung K.W.K., Liu C., Yang X. Biomimetic porous scaffolds for bone tissue engineering // Mater. Sci. Eng. R. Rep. 2014. Vol. 80. P. 1–36.

7. Melke J., Midha S., Ghosh S., Ito K., Hofmann S. Silk fibroin as biomaterial for bone tissue engineering // Acta Biomater. 2016. Vol. 31. P. 1–16.

8. Bagrov D., Zhuikov V., Chudinova Y., Yarisheva A., Kotlyarova M., Arkhipova A., Khaydapova D., Moisenovich M., Shaitan K. Mechanical properties of films and three- dimensional scaffolds made of fibroin and gelatin // Biophysics. 2017. Vol. 62. N 1. P. 17–23.

9. Orlova A.A., Kotlyarova M.S., Lavrenov V.S., Volkova S.V, Arkhipova A.Y. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts // Bull. Exp. Biol. Med. 2014. Vol. 158. N 1. P. 88–91.

10. Moisenovich M.M., Kulikov D.A., Arkhipova A.Y., Malyuchenko N.V, Kotlyarova M.S., Goncharenko A.V., Kulikov A.V, Mashkov A.E., Agapov I.I., Paleev F.N., Svistunov A.A., Kirpichnikov M.P. Fundamental bases for the use of silk fibroin- based bioresorbable microvehicles as an example of skin regeneration in therapeutic practice // Ter. Arkh. 2015. Vol. 87. N 12. P. 66–72.

11. Huang Y., Ren J., Ren T., Gu S., Tan Q., Zhang L., Lv K., Pan K., Jiang X. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of ARG-GLY-ASP peptide and preliminary bone regeneration of mandibular defect thereof // J. Biomed. Mater. Res. A. 2010. Vol. 95. N 4. P. 993–1003.

12. Sheikh Z., Hamdan N., Ikeda Y., Grynpas M., Ganss B., Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review // Biomater. Res. 2017. Vol. 21, 9

13. Liao S., Wang W., Uo M., Ohkawa S., Akasaka T., Tamura K., Cui F., Watari F. A three- layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration // Biomaterials. 2005. Vol. 26. N 36. P. 7564–7571.

14. Liao S., Yokoyama A., Zhu Y., Watari F., Ramakrishna S., Chan C.K. In vitro and in vivo behaviors of the threelayered nanocarbonated hydroxyapatite/collagen/PLGA composite // J. Bioact. Compat. Polym. 2010. Vol. 25. N 2. P. 154–168.

15. Zhang W., Zhu C., Ye D., Xu L., Zhang X., Wu Q., Zhang X., Kaplan D.L., Jiang X. Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration. // PLoS One. 2014. Vol. 9. N 7. e102371.

16. Muraev A.A., Bonartsev A.P., Gazhva Yu.V. et. al. Development and preclinical studies of orthotopic bone implants based on a hybrid construction from poly (3-hydroxybutyrate) and sodium alginate // Sovrem. Technol. Med. 2016. Vol. 8. N 4. P. 42–49.

17. Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.E. Scaffold design for bone regeneration // J. Nanosci. Nanotechnol. 2014. Vol. 14. N 1. P. 15–56.

18. Costa-Almeida R., Soares R., Granja P.L. Fibroblasts as maestros orchestrating tissue regeneration // J. Tissue Eng. Regen. Med. 2017. DOI: 10.1002/term.2405.

19. Akhmanova M., Osidak E., Domogatsky S., Rodin S., Domogatskaya A. Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research // Stem Cells Int. 2015. Vol. 2015. Article ID 167025.

20. Tseng P.C., Young T.H., Wang T.M., Peng H.W., Hou S.M., Yen M.L. Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension // Biomaterials. 2012. Vol. 33. N 2. P. 556–564.

21. Goncharenko A.V, Malyuchenko N.V, Moisenovich A.M., Kotlyarova M.S., Arkhipova A.Y., Kon’kov A.S., Agapov I.I., Molochkov A. V, Moisenovich M.M., Kirpichnikov M.P. Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds // Dokl. Biochem. Biophys. 2016. Vol. 470. N 1. P. 368–370.

22. Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions // J. Orthop. Surg. Res. 2014. Vol. 9, 18.


Review

For citations:


Kotliarova M.S., Arkhipova A.Yu., Moysenovich A.M., Kulikov D.A., Kulikov A.V., Kon’kov A.S., Bobrov M.A., Agapov I.I., Moisenovich M.M., Molochkov A.V., Goncharenko A.V., Shaitan K.V. BIORESORBABLE SCAFFOLDS BASED ON FIBROIN FOR BONE TISSUE REGENERATION. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(4):222-228. (In Russ.)

Views: 391


ISSN 0137-0952 (Print)