THE POSSIBILITY OF USING PHENOL- AND 2,4-DICHLOROPHENOL-DEGRADING STRAIN, RHODOCOCCUS ERYTHROPOLIS 17S, FOR CLEANING OF INDUSTRIAL WASTEWATER
Abstract
Isolation and characterization of a new phenol- and 2,4-dichlorophenol (2,4-DCP)-degrading bacterium from the soil contaminated with phenol and its derivatives for a long time are reported. The strain 17S was identified as Rhodococcus erythropolis based on the results of 16S rRNA sequence analysis data and its phenotypic, physiological and biochemical features. The growth of R. erythropolis 17S in batch culture using phenol and 2,4-DCP as sources of carbon and energy has been studied. The concentration of phenol and 2,4-DCP in culture medium decreased by 55% (at the 4th day) and 47% (at the 22nd day) from the control values, respectively. It is concluded that R. erythropolis 17S can be used for phenol utilization in industrial wastewaters of petrochemical and tanning extracts manufacturing.
About the Authors
V. V. KorobovRussian Federation
prospect Oktyabrya 69, Ufa, 450054, Russia
E. I. Zhurenko
Russian Federation
prospect Oktyabrya 69, Ufa, 450054, Russia
N. V. Zharikova
Russian Federation
prospect Oktyabrya 69, Ufa, 450054, Russia
T. R. Iasakov
Russian Federation
prospect Oktyabrya 69, Ufa, 450054, Russia
T. V. Markusheva
Russian Federation
prospect Oktyabrya 69, Ufa, 450054, Russia
References
1. Quan X., Shia H., Zhangc Y., Wanga J., Qiana Y. Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. // Sep. Purif. Technol. 2004. Vol. 34. N 1–3. P. 97–103.
2. Коробов В.В., Жарикова Н.В., Анисимова Л.Г., Ясаков Т.Р., Кусова И.В., Журенко Е.Ю., Галкин Е.Г., Маркушева Т.В. Agromyces sp. IBRB-34DCP – новый штаммдеструктор фенола и 2,4-дихлорфенола // Изв. Самар. науч. центра РАН. 2013. Т. 15. № 3–4. С. 1320–1322.
3. Kivisaar M.A., Habicht J.K., Heinaru A.L. Degradation of phenol and m-toluate in Pseudomonas sp. strain EST1001 and its Pseudomonas putida transconjugants is determined by a multiplasmid system // J. Bacteriol. 1989. Vol. 171. N 9. P. 5111–5116.
4. Nurk A., Kasak L., Kivisaar M. Sequence of the gene (phe A) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida // Gene. 1991. Vol. 102. N 1. P. 13–18.
5. Haigler B.E., Pettigrew C.A., Spain J.C. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150 // Appl. Envir. Microbiol. 1992. Vol. 58. N 7. P. 2237–2244.
6. Горлатов С.Н., Мальцева О.В., Шевченко В.И., Головлева Л.А. Разложение хлорфенолов культурой Rhodococcus erythropolis // Микробиология. 1989. Т. 58. № 5. С. 802–806.
7. Korshunova I.O., Kuyukina M.S., Ivshina I.B., Pistsova O.N. The effect of organic solvents on the viability and morphofunctional properties of rhodococcus // Appl. Biochem. Microbiol. 2016. Vol. 52. N 1. P. 43–50.
8. Serebrennikova M.K., Kuyukina M.S., Krivoruchko A.V., Ivshina I.B. Adaptation of coimmobilized Rhodococcus cells to oil hydrocarbons in a column bioreactor // Appl. Biochem. Microbiol. 2014. Vol. 50. N 3. P. 265–272.
9. Практикум по микробиологии. Уч. пособие для вузов / Под ред. А.И. Нетрусова. М.: Академия, 2005. 608 с.
10. Bolshakova A.V., Kiselyova O.I., Yaminsky I.V. Microbial surfaces investigated using atomic force microscopy // Biotechnol. Prog. 2004. Vol. 20. N 6. P. 1615–1622.
11. Коробов В.В., Маркушева Т.В., Кусова И.В., Журенко Е.Ю., Галкин Е.Г., Жарикова Н.В., Гафиятова Л.Р. Штамм бактерий Serratia marcescens В-6493 – деструктор фенола и 2,4- дихлорфенола // Биотехнология. 2006. № 2. С. 63–65.
12. Методическое руководство по анализу сточных вод нефтеперерабатывающих и нефтехимических заводов. М. 1977. C. 367–387.
13. Zharikova N.V., Iasakov T.R., Zhurenko E.I., Korobov V.V., Sagitova A.I., Markusheva T.V., Bumazhkin B.K., Patutina E.O., Kuznetsov B.B. Isolation and sequence analysis of pCS36- 4CPA, a small plasmid from Citrobacter sp. 36-4CPA // Saudi J. Biol. Sci. 2016. doi: 10.1016/j.sjbs.2016.02.014.3
14. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. GenBank // Nucleic Acids Res. 2005. Vol. 33, suppl. 1. P. D34–D38.
15. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. Vol. 33. N 7. P. 1870–1874.
16. Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 1987. Vol. 4. N 4. P. 406–425.
17. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method // Proc. Natl. Acad. Sci. U.S.A. 2004. Vol. 101. N 30. P. 11030– 11035.
18. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap // Evolution. 1985. Vol. 39. N 4. P. 783–791.
Review
For citations:
Korobov V.V., Zhurenko E.I., Zharikova N.V., Iasakov T.R., Markusheva T.V. THE POSSIBILITY OF USING PHENOL- AND 2,4-DICHLOROPHENOL-DEGRADING STRAIN, RHODOCOCCUS ERYTHROPOLIS 17S, FOR CLEANING OF INDUSTRIAL WASTEWATER. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(4):235-240. (In Russ.)