REGULATION OF THE ACTIN CYTOSKELETON TRANSFORMATION IN THE CELL BY Arp2/3 COMPLEX. REVIEW
Abstract
The cytoskeleton is formed by a network of protein filaments, including microtubules, actin filaments and intermediate filaments. Filaments permeate the entire cytoplasm; they are involved in maintaining the cell shape, they organize and anchor the organelles, they control the transport of various molecules, cell division and provide signal transduction. To implement these diverse and complex functions, the components of the cytoskeleton must be very dynamic and mobile, be able to rebuilt quickly and interact with each other. This is due to the presence of a large number of actin-binding proteins – nucleators, activators, inactivators of polymerization and depolymerization of actin filaments. This review describes the regulation of actin dynamics by the Arp2/3 complex. In the cell, this complex is in an inactive state. Its activation occurs after the interaction with activators. Activators change the conformation and spatial arrangement of the domains of the Arp2/3 complex, providing its interaction with monomeric and polymeric actin.
Activators of the Arp2/3-complex have been known for a long time and include such proteins as WASp and WAVE. All activators possess a specific VCA domain, which is responsible for their binding to the Arp2/3 complex. The structure of the complex with bound activators has been studied using various physico-chemical methods. The inactivators of the complex only recently attracted specific attention of the investigators. At present, at least five different proteins are known to inactivate the Arp2/3 complex by binding to its various subunits. Examples of inactivators are coronin, Gmf and arpin. The structure of the Arp2/3 complex with inactivators was recently published and showed that despite their binding to different subunits of the complex, all inactivators transform the Arp2/3 complex into an “open” state, moving the actin-like Arp subunits
apart from each other. Studies of the spatial organization of actin-binding proteins are necessary for understanding the patterns of interaction between them while providing the vital activity of the cell. These data can later be used in the search for new ligands to prevent metastasis of tumor cells.
About the Authors
A. S. ChemerisRussian Federation
Department of Bioengineering, School of BiologyLeninskiye gory 1–12, Moscow, 119234, Russia
A. V. Vakhrusheva
Russian Federation
Department of Bioengineering, School of BiologyLeninskiye gory 1–12, Moscow, 119234, Russia
N. I. Derkacheva
Russian Federation
Department of Biochemistry
Delegatskaya st. 20–1, Moscow, 127473, Russia;
O. S. Sokolova
Russian Federation
Department of Bioengineering, School of BiologyLeninskiye gory 1–12, Moscow, 119234, Russia
References
1. Lee S.H., Dominguez R. Regulation of actin cytoskeleton dynamics in cells // Mol. Cells. 2010. Vol. 29. N 4. P. 311–325.
2. Dominguez R. Actin filament nucleation and elongation factors – structure-function relationships // Crit. Rev. Biochem. Mol. Biol. 2009. Vol. 44. N 6. P. 351–366.
3. Shimada A., Nyitrai M., Vetter I.R., Kühlmann D., Bugyi B., Narumiya S., Geeves M.A., Wittinghofer A. The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization // Mol. Cell. 2004. Vol. 13. N 4. P. 511–522.
4. Winder S.J., Ayscough K.R. Actin-binding proteins // J. Cell Sci. 2005. Vol. 118. N 4. P. 651–654.
5. Pfaendtner J., Volkmann N., Hanein D., Dalhaimer P., Pollard T.D., Voth G.A. Key structural features of the actin filament Arp2/3 complex branch junction revealed by molecular simulation // J. Mol. Biol. 2012. Vol. 416. N 1. P. 148–161.
6. Robinson R.C., Turbedsky K., Kaiser D.A., Marchand J.-P., Higgs H.N., Choe S., Pollard T.D. Crystal structure of Arp2/3 complex // Science. 2001. Vol. 294. N 5547. P. 1679–1684.
7. Rodal A.A., Sokolova O., Robins D.B., Daugherty K.M., Hippenmeyer S., Riezman H., Grigorieff N., Goode B.L. Conformational changes in the Arp2/3 complex leading to actin nucleation // Nat. Struct. Mol. Biol. 2005. Vol. 12. N 1. P. 26–31.
8. Rouiller I., Xu X.P., Amann K.J., Egile C., Nickell S., Nicastro D., Li R., Pollard T.D., Volkmann N., Hanein D. The structural basis of actin filament branching by the Arp2/3 complex // J. Cell. Biol. 2008. Vol. 180. N 5. P. 887–895.
9. Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins // Ann. Rev. Biophys. Biomol. Struct. 2007. Vol. 36. P. 451–477.
10. Xu X.P., Rouiller I., Slaughter B.D., Egile C., Kim E., Unruh J.R., Fan X., Pollard T.D., Li R., Hanein D., Volkmann N. Three-dimensional reconstructions of Arp2/3 complex with bound nucleation promoting factors // EMBO J. 2012. Vol. 31. N 1. P. 236–247.
11. Kelly A.E., Kranitz H., D tsch V., Mullins R.D. Actin binding to the central domain of WASP/Scar proteins plays a critical role in the activation of the Arp2/3 complex // J. Biol. Chem. 2006. Vol. 281. N 15. P. 10589–10597.
12. Goley E.D., Rodenbusch S.E., Martin A.C., Welch M.D. Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor // Mol. Cell. 2004. Vol. 16. N 2. P. 269–279.
13. Padrick S.B., Rosen M.K. Physical mechanisms of signal integration by WASP family proteins // Annu. Rev. Biochem. 2010. Vol. 79. P. 707–735.
14. Ti S.C., Jurgenson C.T., Nolen B.J., Pollard T.D. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex // Proc. Natl. Acad. Sci. U.S.A. 2011. Vol. 108. N 33. P. E463–E471.
15. Boczkowska M., Rebowski G, Kast D.J., Dominguez R. Structural analysis of the transitional state of Arp2/3 complex activation by two actin-WCAs // Nat. Commun. 2014. Vol. 5. 3308.
16. Padrick S.B., Cheng H.C., Ismail A.M., Panchal S.C., Doolittle L.K., Kim S., Skehan B.M., Umetani J., Brautigam C.A., Leong J.M., Rosen M.K. Hierarchical regulation of WASP/ WAVE proteins // Mol. Cell. 2008. Vol. 32. N 3. P. 426–438.
17. Campellone K.G., Webb N.J., Znameroski E.A., Welch M.D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport // Cell. 2008. Vol. 134. N 1. P. 148–161.
18. Sokolova O.S., Chemeris A., Guo S., Alioto S.L., Gandhi M., Padrick S., Pechnikova E., David V., Gautreau A., Goode B.L. Structural basis of Arp2/3 complex inhibition by GMF, Coronin, and Arpin // J. Mol. Biol. 2017. Vol. 429. N 2. P. 237–248.
19. Gandhi M., Achard V., Blanchoin L., Goode B.L. Coronin switches roles in actin disassembly depending on the nucleotide state of actin // Mol. Cell. 2009. Vol. 34. N 3. P. 364–374.
20. F ger N., Rangell L., Danilenko D.M., Chan A.C. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis // Science. 2006. Vol. 313. N 5788. P. 839–842.
21. Cai L., Makhov A.M., Schafer D.A., Bear J.E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia // Cell. 2008. Vol. 134. N 5. P. 828–842.
22. Rocca D.L., Martin S., Jenkins E.L., Hanley J.G. Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis // Nat. Cell. Biol. 2008. Vol. 10. N 3. P. 259–271.
23. Luan Q., Nolen B.J. Structural basis for regulation of Arp2/3 complex by GMF // Nat. Struct. Mol. Biol. 2013. Vol. 20. N 9. P. 1062–1068.
24. Ydenberg C.A., Padrick S.B., Sweeney M.O., Gandhi M., Sokolova O., Goode B.L. GMF severs actin-Arp2/3 complex branch junctions by a cofilin-like mechanism // Curr. Biol. 2013. Vol. 23. N 12. P. 1037–1045.
25. Dang I., Gorelik R., Sousa-Blin C. et al. Inhibitory signalling to the Arp2/3 complex steers cell migration // Nature. 2013. Vol. 503. N 7475. P. 281–284.
26. Попинако А.В., Антонов М.Ю., Чемеpиc А.C., Шайтан К.В., Cоколова О.C. Анализ взаимодействия Arp2/3-комплекса с инактиватором арпином методом молекулярной динамики // Биофизика. 2017. Т. 62. № 6. С. 1–7.
27. Huff T., Müller C.S., Otto A.M., Netzker R., Hannappel E. β-Thymosins, small acidic peptides with multiple functions // Int. J. Biochem. Cell Biol. 2001. Vol. 33. N 3. P. 205–220.
28. Giganti A., Friederich E. The actin cytoskeleton as a therapeutic target: state of the art and future directions // Prog. Cell Cycle Res. 2003. Vol. 5. P. 511–525.
Review
For citations:
Chemeris A.S., Vakhrusheva A.V., Derkacheva N.I., Sokolova O.S. REGULATION OF THE ACTIN CYTOSKELETON TRANSFORMATION IN THE CELL BY Arp2/3 COMPLEX. REVIEW. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(1):3-9. (In Russ.)