PHOTOCURABLE HYDROGELS CONTAINING METHACRYLATED GELATIN AND SPIDROIN OR FIBROIN
Abstract
Photocurable hydrogels were fabricated from methacrylated gelatin and silk proteins, including recombinant analogue of spidroin from Nephila clavipes spider web and fibroin from the cocoons of the silkworm Bombyx mori. These polymers have high applicability in tissue engineering due to their biocompatibility and biodegradability. Hydrogels were fabricated using two different methods that allowed us to obtain either large-sized products or microstructures of certain shape.
For the production of extensive hydrogels, samples were photopolymerized in the UV light within ten minutes. As a result samples of hydrogels were obtained as disks with a diameter of 13 mm.
Scanning electron microscopy confirmed their porous structure. Microstructures were formed on coverslips using confocal microscope Eclipse Ti-E with 405 nm laser. This approach gives us an opportunity to control the topographic features of the obtained substrates and is applicable for creating micropatterns for studying the interaction of cells with a substrate.
About the Authors
I. V. BessonovRussian Federation
Department of Bioengineering
Leninskiye gory 1–12, Moscow, 119234, Russia;
M. S. Kotliarova
Russian Federation
Department of Bioengineering
Leninskiye gory 1–12, Moscow, 119234, Russia;
M. N. Kopitsyna
Russian Federation
Department of Bioengineering
Leninskiye gory 1–12, Moscow, 119234, Russia;
A. V. Fedulov
Russian Federation
Shepkina st. 61/2–1, Moscow, 129110, Russia;
A. M. Moysenovich
Russian Federation
Department of Bioengineering
Leninskiye gory 1–12, Moscow, 119234, Russia;
A. Yu. Arkhipova
Russian Federation
Laboratory of Confocal Microscopy, School of Biology
Leninskiye gory 1–12, Moscow, 119234, Russia;
V. G. Bogush
Russian Federation
1-st Dorozhniy pr. 1, Moscow, 117545, Russia
D. V. Bagrov
Russian Federation
Department of Bioengineering
Leninskiye gory 1–12, Moscow, 119234, Russia;
A. A. Ramonova
Russian Federation
Laboratory of Confocal Microscopy, School of Biology
Leninskiye gory 1–12, Moscow, 119234, Russia;
A. E. Mashkov
Russian Federation
Shepkina st. 61/2–1, Moscow, 129110, Russia;
K. V. Shaitan
Russian Federation
Department of Bioengineering
Leninskiye gory 1–12, Moscow, 119234, Russia;
M. M. Moisenovich
Russian Federation
Laboratory of Confocal Microscopy, School of Biology
Leninskiye gory 1–12, Moscow, 119234, Russia;
References
1. Li S., Tuft B.W., Xu L., Polacco M.A., Clarke J.C., Guymon C.A., Hansen M.R. Microtopographical features generated by photopolymerization recruit RhoA/ROCK through TRPV1 to direct cell and neurite growth // Biomaterials. 2015. Vol. 53. P. 95–106.
2. Chia H.N., Wu B.M. Recent advances in 3D printing of biomaterials // J. Biol. Eng. 2015. Vol. 9. 4.
3. Yue K., Trujillo-de Santiago G., Alvarez M., Tamayol A., Annabi N., Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels // Biomaterials. 2015. Vol. 73. P. 254–271.
4. Xiao W., He J., Nichol J.W., Wang L., Hutson C.B., Wang B., Du Y., Fan H., Khademhosseini A. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels // Acta Biomater. 2011. Vol. 7. N 6. P. 2384–2393.
5. Moisenovich M.M., Pustovalova O.I., Shackelford J., Vasiljeva T.V., Druzhinina T.V., Kamenchuk Y.A., Guzeev V.V., Sokolova O.S., Bogush V.G., Debabov V.G., Kirpichnikov M.P., Agapov I.I. Tissue regeneration in vivo within recombinant spidroin 1 scaffolds // Biomaterials. 2012. Vol. 33. N 15. P. 3887–3898.
6. Sidoruk K.V, Davydova L.I., Kozlov D.G., Gubaidullin D.G., Glazunov A.V., Bogush V.G., Debabov V.G. Fermentation optimization of a Saccharomyces cerevisiae strain producing 1F9 recombinant spidroin // Appl. Biochem. Microbiol. 2015. Vol. 51. N 7. P. 766–773.
7. Caló E., Khutoryanskiy V.V. Biomedical applications of hydrogels: a review of patents and commercial products // Eur. Polym. J. 2015. Vol. 65. P. 252–267.
8. Kamoun E.A., Kenawy E.R.S., Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings // J. Adv. Res. 2017. Vol. 8. N 3. P. 217–233.
9. Arkhipova A.Y., Nosenko M.A., Malyuchenko N.V., Zvartsev R.V., Moisenovich A.M., Zhdanova A.S., Vasil’eva T.V., Gorshkova E.A., Agapov I.I., Drutskaya M.S., Nedospasov S.A., Moisenovich M.M. Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice // Biochemistry (Mosc). 2016. Vol. 81. N 11. С. 1251–1260.
10. Moisenovich M.M., Malyuchenko N.V., Arkhipova A.Y., Kotlyarova M.S., Davydova L.I., Goncharenko A.V., Agapova O.I., Drutskaya M.S., Bogush V.G., Agapov I.I., Debabov V.G., Kirpichnikov M.P. Novel 3D-microcarriers from recombinant spidroin for regenerative medicine // Dokl. Biochem. Biophys. 2015. Vol. 463. N 1. P. 232–235.
11. Burri O., Wolf B., Seitz A., Gönczy P. TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis // PLoS ONE. 2017. Vol. 12. N 7. e0179752.
Review
For citations:
Bessonov I.V., Kotliarova M.S., Kopitsyna M.N., Fedulov A.V., Moysenovich A.M., Arkhipova A.Yu., Bogush V.G., Bagrov D.V., Ramonova A.A., Mashkov A.E., Shaitan K.V., Moisenovich M.M. PHOTOCURABLE HYDROGELS CONTAINING METHACRYLATED GELATIN AND SPIDROIN OR FIBROIN. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(1):29-33. (In Russ.)