Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

EFFECTS OF EXTRACELLULAR DIADENOSINE TETRAPHOSPHATE ON ACTION POTENTIALS IN ATRIAL AND VENTRICULAR MYOCARDIUM OF THE RAT HEART DURING EARLY POSTNATAL ONTOGENESIS

Abstract

Diadenosine tetraphosphate (Ap4A) belongs to a wide group of naturally-derived endogenous purine compounds that have been recently considered as new neurotransmitters in autonomic nervous system. It has been shown that Ap4A induces inhibitory effects and modulate adrenergic control in the heart of adult mammals. Nevertheless, the physiological significance of Ap4A in early postnatal development, when sympathetic innervation remains yet immature, has
not been investigated. The aim of the present study was to elucidate the effects Ap4A on heart bioelectrical activity in early postnatal ontogenesis. Action potentials (AP) were recorded with use of standard microelectrode technique in multicellular isolated right atrial (RA), left atrial (LA) and ventricle (RV) preparations from male Wistar rats at postnatal day 1, 14, 21 and, also, from 60-day animals which were considered as adult. The application of Ap4A caused significant reduction of AP duration in atrial (RA and LA) preparations from rats of all ages. Also, Ap4A caused significant AP shortening in RV preparations from rats of various ages, however, the effect was more pronounced in 21-day and adult rats. Ap4A failed to alter automaticity of RA preparations from rats at postnatal day 1, 14, 21 and weakly decreased spontaneous rhythm in RA preparations from the adult rats. The effect of Ap4A was partially abolished by P2-receptor blocker PPADS in LA preparations from both 21 day and adult rats, while failed to suppress Ap4Acaused AP shortening in preparations from 1- and 14-day animals. Thus, extracellular Ap4A causes shortening of AP both in the atrial and ventricular myocardium in early postnatal ontogenesis and adult rats. The effect of Ap4A depends on age only in ventricular myocardium where it may be attributed with growing contribution of diadenosine polyphosphates to the control of myocardium inotropy.

About the Authors

К. B. Pustovit
Lomonosov Moscow State University; Pirogov Russian National Research Medical University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology
Leninskye gory 1–12, Moscow, 119234, Russia;

Department of Physiology
Ostrovitianov st. 1, Moscow, 117997, Russia



V. M. Potekhina
Lomonosov Moscow State University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology

Leninskye gory 1–12, Moscow, 119234, Russia;



N. V. Pakhomov
Lomonosov Moscow State University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology

Leninskye gory 1–12, Moscow, 119234, Russia;



V. S. Kuzmin
Lomonosov Moscow State University; Pirogov Russian National Research Medical University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology
Leninskye gory 1–12, Moscow, 119234, Russia;

Department of Physiology
Ostrovitianov st. 1, Moscow, 117997, Russia



References

1. Szalata M. Dinucleoside polyphosphates: occurrence, metabolism and function // Postepy Biochem. 2001. Vol. 47. N 1. P. 105–113.

2. Abramochkin D.V., Pustovit K.B., Filatova T.S. Effects of diadenosine polyphosphates on inward rectifier potassium currents in rat cardiomyocytes // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 153–157.

3. Pakhomov N.V., Pustovit K.B., Abramochkin D.V., Kuz’min V.S. The role of diadenosine pentaphosphate and nicotinamide adenine dinucleotide (NAD+) as potential nucleotide comediators in the adrenergic regulation of cardiac function // Neurochem. J. 2017. Vol. 11. N 1. P. 63–71.

4. Flores N.A., Stavrou B.M., Sheridan D.J. The effects of diadenosine polyphosphates on the cardiovascular system // Cardiovasc. Res. 1999. Vol. 42. N 1. P. 15–26.

5. Abramochkin D.V., Karimova V.M., Filatova T.S., Kamkin A. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier // J. Physiol. Sci. 2017. Vol. 67. N 4. P. 523–529.

6. Hoyle C.H., Ziganshin A.U., Pintor J., Burnstock G. The activation of P1- and P2-purinoceptors in the guinea-pig left atrium by diadenosine polyphosphates // Br. J. Pharmacol 1996. Vol. 118. N 5. P. 1294–1300.

7. Erlinge D., Burnstock G. P2 receptors in cardiovascular regulation and disease // Purinergic Signal. 2008. Vol. 4. N 1. P. 1–20.

8. Vassort G. Adenosine 5’-triphosphate: a P2-purinergic agonist in the myocardium // Physiol. Rev. 2001. Vol. 81. N 2. P. 767–806.

9. Pustovit K.B., Kuzmin V.S., Abramochkin D.V. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors // Naunyn Schmiedebergs Arch. Pharmacol. 2016. Vol. 389. N 3. P. 303–313.

10. Cheung K.K., Ryten M., Burnstock G. Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development // Dev. Dyn. 2003. Vol. 228. N 2. P. 254–266.

11. Burnstock G., Dale N. Purinergic signalling during development and ageing // Purinergic Signal. 2015. Vol. 11. N 3. P. 277–305.

12. Webb T.E., Boluyt M.O., Barnard E.A. Molecular biology of P2Y purinoceptors: expression in rat heart // J. Auton. Pharmacol. 1996. Vol. 16. N 6. P. 303–308.

13. Pelleg A., Katchanov G., Xu J. Autonomic neural control of cardiac function: modulation by adenosine and adenosine-5-triphosphate // Am. J. Cardiol. 1997. Vol. 79. N 12. Suppl. 1. P. 11–14.

14. Neumann J., Meissner A., Boknik P., Gombosová I., Knapp J., Lüss H., Müller F.U., Schlüter H., Zidek W., Rolf N., Van Aken H., Vahlensieck U., Schmitz W. Inotropic effects of diadenosine tetraphosphate in isolated canine cardiac preparations // J. Cardiovasc. Pharmacol. 1999. Vol. 33. N 1. P. 151–156.

15. Sawmiller D.R., Fenton R.A., Dobson J.G., Jr. Myocardial adenosine A1-receptor sensitivity during juvenile and adult stages of maturation // Am. J. Physiol. 1998. Vol. 274. N 2. P. H627–H635.

16. Cothran D.L., Lloyd T.R., Taylor H., Linden J., Matherne G.P. Ontogeny of rat myocardial A1 adenosine receptors // Biol. Neonate. 1995. Vol. 68. N 2. P. 111–118.

17. Anikina T.A., Bilalova G.A., Zverev A.A., Sitdikov F.G. Role of P2X and P2Y receptors in rat myocardial contractility during ontogeny // Bull. Exp. Biol. Med. 2007. Vol. 143. N 6. P. 695–698.

18. Anikina T.A. Zverev A.A., Sitdikov F.G., Anisimova I.N. Interaction of adrenergic and purinergic receptors in the regulation of rat myocardial contractility in postnatal ontogeny // Russ. J. Dev. Biol. 2013. Vol. 44. N 6. P. 296–301.

19. Anikina T.A. Sitdikov F.G., Khamzina E.Yu., Bilalova G.A. Role of purinoceptors in cardiac function in rats during ontogeny // Bull. Exp. Biol. Med. 2005. Vol. 140. N 5. P. 483–485.

20. Massé K., Dale N. Purines as potential morphogens during embryonic development // Purinergic Signal. 2012. Vol. 8. N 3. P. 503–521.

21. Bogdanov Y., Rubino A., Burnstock G. Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart // Life Sci. 1998. Vol. 62. N 8. P. 697–703.

22. Buvinic S., Briones R., Huidobro-Toro J.P. P2Y(1) and P2Y(2) receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed // Br. J. Pharmacol. 2002. Vol. 136. N 6. P. 847–856.


Review

For citations:


Pustovit К.B., Potekhina V.M., Pakhomov N.V., Kuzmin V.S. EFFECTS OF EXTRACELLULAR DIADENOSINE TETRAPHOSPHATE ON ACTION POTENTIALS IN ATRIAL AND VENTRICULAR MYOCARDIUM OF THE RAT HEART DURING EARLY POSTNATAL ONTOGENESIS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(1):52-59. (In Russ.)

Views: 325


ISSN 0137-0952 (Print)