THERMOPHILIC ANAEROBIC MICROBIAL COMMUNITIES THAT TRANSORM CELULOSE INTO METHANE (BIOGAS)
https://doi.org/10.1234/XXXX-XXXX-2012-2-36-42
Abstract
Several anaerobic microbial communities that produce biogas from cellulose were isolated and examined from 24 different natural and anthropogenic sources. The most active methane producers have been selected under thermophilic conditions (+55°C). In order to optimize the cultivation conditions for better growth and development of both cellulosolitics and methanogens, the modified medium has been developed. The most stable microbial consortia maintained their activities in biogas formation for at least 5 passages. The composition of biogas has been studied by using gas chromatography. In average, the percentage of methane in produced biogas reached 60%. Microscopy studies of anaerobic microbial communities revealed the presence of morphologically different cells that varied as community stabilized.
About the Authors
E. A. TsavkelovaRussian Federation
M. A. Egorova
Russian Federation
E. V. Petrova
Russian Federation
A. I. Netrusov
Russian Federation
References
1. Abelson H.P. Renewable liquid fuels // Science. 1995. Vol. 268. P. 955.
2. Claassen P.A.M., de Vrije T. Non-thermal production of pure hydrogen from biomass: HYVOLUTION // Int. J. Hydrogen Energy. 2006. Vol. 31. P. 1416—1423.
3. Boerjesson P., Mattiasson B. Biogas as a resource-efficient vehicle fuel // Trends Biotechnol. 2008. Vol. 26. P. 7—13.
4. Калюжный С.В., Данилович Д.А., Ножевникова А.Н. Анаэробная биологическая очистка сточных вод // Итоги науки и техники. Сер. Биотехнология. 1991. Т. 29. 156 c.
5. Ножевникова А.Н., Лебедев В.С., Заварзин Г.А., Иванов Д.В., Некрасова В.К., Лифшиц А.В. Образование, окисление и эмиссия биогаза на объектах захоронения бытовых отходов // Журн. общ. биол. 1993. № 4. С. 168—183.
6. Hall D.O., Scrase J.I. Will biomass be the environmentally friendly fuel of the future? // Biomass and Bioenergy. 1998. Vol. 15. № 4. P. 357—367.
7. Rice W. Hydrogen production from methane hydrate with sequestering of carbon dioxide // Int. J. Hydrogen Energy. 2006. Vol. 31. P. 1955—1963.
8. Калюжный С.В., Пузанков А.Г., Варфоломеев С.Д. Биогаз: проблемы и решения // Итоги науки и техники. Биотехнология. 1988. Т. 21. 177 c.
9. Kapdi S.S., Vijay V.K., Rajesh S.K., Prasad R. Biogas scrubbing, compression and storage: perspective and prospectus in Indian context // Renew. Energy. 2005. Vol. 30. P. 1195—1202.
10. Василов Р.Г. Перспективы развития производства биотоплива в России. Сообщение 3: биогаз // Вестник биотехнологии и физико-химической биологии им. Ю.А. Овчинникова. 2007. Т. 3. № 3. С. 54—61.
11. Vindis P., Mursec B., Rozman C., Janzekovic M., Cus F. Mini digester and biogas production from plant biomass // J. Achiev. Mater. Manuf. Eng. 2009. Vol. 35. P. 191—196.
12. Angelidaki I., Ahring B.K. Thermophilic anaerobic digestion of livestock wastes: the effect of ammonia // Appl. Microbiol. Biotechnol. 1993. Vol. 38. P. 560—564.
13. Lьbken M., Gehring T., Wichern M. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling // Appl. Microbiol. Bioechnol. 2010. Vol. 85. P. 1643—1652.
14. Pillay V.L., Townsen B., Buckley C.A. Improving the performance of anaerobic digesters at wastewater treatment works: The coupled cross-flow microfiltration/digester process // Wat. Sci. Techn. 1994. Vol. 30. P. 329—337.
15. Schink B. Energetics of syntrophic cooperation in methanogenic degradation // Microbiol. Mol. Biol. Rev. 1997. Vol. 61. P. 262—280.
16. Chan A.S.K., Parkin T.B. Methane oxidation and production activity in soils from natural and agricultural ecosystems // J. Environ. Qual. 2001. Vol. 30. P. 1896—1903.
17. Ueno Y., Sasaki D., Fukui H., Haruta S., Ishii M., Igarashi Y. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by hermophilic anaerobic microflora // J. Appl. Microbiol. 2006. Vol. 101. P. 331—343.
18. Farhadian M., Borghei M., Umrania V.V. Treatment of beet sugar wastewater by UAFB bioprocess // Bioresource Technol. 2007. Vol. 98. P. 3080—3083.
19. Smiti N., Ollivier B., Garcia J.L. Thermophilic degradation of cellulose by a triculture of Clostridium thermocellum, Methanobacterium sp. and Methanosarcina MP // FEMS Microbiol. Lett. 1986. Vol. 35. P. 93—97.
20. Nozhevnikova A.N., Zepp K., Vazquez F., Zehnder A.J.B., Holliger C. Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes // Appl. Environ. Microbiol. 2003. Vol. 69. P. 1832—1835.
21. Li T., Mazйas, Sghir A., Leblon G., Bouchez T. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions // Environm. Microbiol. 2009. Vol. 11. P. 889—904.
22. Заварзин Г.А. Микробное сообщество в прошлом и настоящем // Микробиология. 1989. Т. 51. С. 3—14.
23. Weimer P.J., Zeikus J.G. One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri // Arch. Microbiol. 1978. Vol. 119. P. 49—57.
24. Звягинцев Д.Г., Асеева И.В., Бабьева И.П., Мирчинк Т.Г. Методы почвенной микробиологии и биохимии. М.: Изд-во Моск. ун-та, 1991. 303 с.
25. Whitman W.B., Bowen T.L., Boone D.R. The methanogenic bacteria // The Prokaryotes, a handbook of the biology of bacteria / Eds. A. Balows, H.G. Trьper, M. Dworkin, W. Harder, K.H. Schleifer. NY.: Springer Verlag, 1992. P. 719—767.
26. Asakawa S., Akagawa-Matsushita M., Morii H., Koga Y., Hayano K. Characterization of Methanosarcina mazeii TMA isolated from a paddy field soil // Curr. Microbiol. 1995. Vol. 31. P. 34—38.
27. Speece R. Anaerobic biotechnology for industrial wastewaters. Nashville: Archae Press, 1996. P. 29—58.
28. Han Y., Dague R. Laboratory studies on temperature-phased anaerobic digestion of domestic primary sludge // Water Environment Research. 1997. Vol. 69. 1139—1143.
29. De Leуn C., Jenkins D. Removal of fecal coliforms by thermophilic anaerobic digestion // Water Science Technology. 2002. Vol. 46. P. 147—152.
30. SahlstrцmL.A review of survival of pathogenic bacteria in organic waste used in biogas plants // Bioresour Technol. 2003. Vol. 87. P. 161—166.
31. Reusser S., Zelinka G. Laboratory-scale comparison of anaerobic-digestion alternatives // Water Environment Research. 2004. Vol. 76. P. 360—380.
32. Nishio N., Nakashimada Y. Recent development of anaerobic digestion processes for energy recovery from wastes // J. of Bioscience and Bioengineering. 2007. Vol. 103. P. 105—112.
33. Pommier S., Manas L.A., Lefebvre X. Analysis of the outcome of shredding pretreatment on the anaerobic biodegradability of paper and cardboard materials // Bioresource Technology. 2010. Vol. 101. P. 463—468.
34. Заварзин Г.А. Эмиссия метана с территории России // Микробиология. 1997. Т. 66. С. 669—673.
Review
For citations:
Tsavkelova E.A., Egorova M.A., Petrova E.V., Netrusov A.I. THERMOPHILIC ANAEROBIC MICROBIAL COMMUNITIES THAT TRANSORM CELULOSE INTO METHANE (BIOGAS). Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2012;(2):36-42. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2012-2-36-42