Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

VISUAL STIMULI FOR P300-BASED BRAIN-COMPUTER INTERFACES: COLOR, SHAPE, MOBILITY

Abstract

The purpose of this study was to identify the impact of different discriminative features of stimuli in P300 brain-computer interface paradigm on overall performance and evoked potentials. It has been shown, that stimuli sets with greater number of discriminative features yield better target selection accuracy. Target selection accuracy was significantly higher for stimuli that differ from each other by color, shape and semantics. Highest performance was achieved with stimuli set containing largest number of discriminative features, namely set of 9 different colored letters. This result is mainly due to higher mean P300 peak amplitude for stimuli sets that contain more discriminative features. The results of the study can be used for designing better user experience in brain-computer interfacing (BCI). Movement of stimuli presentation point and characteristics of this movement (linear or pseudorandom) didn’t have any impact on BCI performance. This result is promising for future BCI designs with rapid serial visual presentation, using mobile robots or augmented reality as stimuli presentation environment.

About the Authors

R. K. Grigoryan
Lomonosov Moscow State University
Russian Federation
Department of Human and Animal Physiology, School of Biology


E. U. Krysanova
Lomonosov Moscow State University
Russian Federation
Department of Human and Animal Physiology, School of Biology


D. A. Kirjanov
Lomonosov Moscow State University
Russian Federation
Department of Human and Animal Physiology, School of Biology


A. Ya. Kaplan
Lomonosov Moscow State University; Lobachevskii Nizhny Novgorod State University
Russian Federation
Department of Human and Animal Physiology, School of Biology


References

1. Powers J.C., Bieliaieva K., Wu S., Nam C.S. The human factors and ergonomics of P300-based brain-computer interfaces // Brain Sci. 2015. Vol. 5. N 3. P. 318–356.

2. Farwell L.A., Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials // Electroencephalogr. Clin. Neurophysiol. 1988. Vol. 70. N 6. P. 510–523.

3. Polich J. Updating P300: an integrative theory of P3a and P3b // Clin. Neurophysiol. 2007. Vol. 118. N 10. P. 2128–2148.

4. Jin J., Allison B.Z., Kaufmann T., Kübler A., Zhang Y., Wang X., Cichocki A. The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement // PLoS One. 2012. Vol. 7. N 11. e49688.

5. Guger C., Daban S., Sellers E., Holzner C., Krausz G., Carabalona R., Gramatica F., Edlinger G. How many people are able to control a P300-based brain–computer interface (BCI)? // Neurosci Lett. 2009. Vol. 462. N 1. P. 94–98.

6. Kaplan A.Ya. Neurophysiological Foundations and Practical Realizations of the Brain-Machine Interfaces the Technology in Neurological Rehabilitation // Hum. Physiol. 2016. Vol. 42 N 1 P. 103–110.

7. Jin J., Allison B.Z., Wang X., Neuper C. A combined brain–computer interface based on P300 potentials and motion-onset visual evoked potentials // J. Neurosci. Methods. 2012. Vol. 205. N. 2. P. 265–276.

8. Guo F., Hong B., Gao X., Gao S. A brain–computer interface using motion-onset visual evoked potential // J. Neural Eng. 2008. Vol. 5. N 4. P. 477–485.

9. Acqualagna L., Treder M.S., Schreuder M., Blankertz B. A novel brain-computer interface based on the rapid serial visual presentation paradigm // Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. Buenos Aires: IEEE, 2010. P. 2686–2689.

10. Yeh Y.Y., Lee D.S., Ko Y.H. Color combination and exposure time on legibility and EEG response of icon presented on visual display terminal // Displays. 2013. Vol. 34. N 1. P. 33–38.

11. Salvaris M., Cinel C., Citi L., Poli R. Novel protocols for P300-based brain–computer interfaces // IEEE T. Neur. Sys. Reh. 2012. Vol. 20. N 1. P. 8–17.

12. Proverbio A.M., Burco F., del Zotto M., Zani A. Blue piglets? Electrophysiological evidence for the primacy of shape over color in object recognition // Cognitive Brain Res. 2004. Vol. 18. N 3. P. 288–300.

13. Ganin I.P., Shishkin S.L., Kaplan A.Y. A P300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design // PLoS One. 2013. Vol. 8. N 10. e77755.

14. Tang J., Zhou Z., Liu Y. A 3D visual stimuli based P300 brain-computer interface: for a robotic arm control // Proceedings of the 2017 International Conference on Artificial Intelligence, Automation and Control Technologies. Wuhan: ACM, 2017, P. 18.

15. Seabold S., Perktold J. Statsmodels: Econometric and statistical modeling with Python // Proceedings of the 9th Python in Science Conference. Austin: SciPy society, 2010. Vol. 57. P. 61.


Review

For citations:


Grigoryan R.K., Krysanova E.U., Kirjanov D.A., Kaplan A.Ya. VISUAL STIMULI FOR P300-BASED BRAIN-COMPUTER INTERFACES: COLOR, SHAPE, MOBILITY. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(2):111-117. (In Russ.)

Views: 335


ISSN 0137-0952 (Print)