JOINT EFFECT OF HISTON H1 AMINO ACID SEQUENCE AND DNA NUCLEOTIDE SEQUENCE ON THE STRUCTURE OF CHROMATOSOMES: ANALYSIS BY MOLECULAR MODELING METHODS
Abstract
A chromosome consisting of a nucleosome core, linker DNA and linker histone (LH), is an important structural element of chromatin and plays role in the replication and transcription regulation. There are two experimentally confirmed modes of LH binding to the nucleosome and linker DNA, which differ in their geometry: binding on-dyad and off-dyad. It was shown that the LH amino acid sequence influences the type of histone binding and the conformation of the chromatosome. However, the geometry of linker DNA bound with LH also changes. Thus, the mutual influence of these factors and the molecular basis determining the type of LH binding to nucleosomes remain unclear. In this study, we applied molecular modeling methods, including homology modeling, atom-atom interaction analysis and DNA deformation energy analysis to study the joint effect of the LH amino acid sequence and the DNA nucleotide sequence on the configuration of the chromatosome. We analyzed the known crystal and NMR structures of the chromatosome for the atom-atom interactions of LH and DNA as well as the energy of DNA deformation in these structures for various DNA sequences. For various LH H1 variants, the analysis was carried out using homology modeling methods. Sequence-dependent differences in the bending energy of the linker DNA for two different conformations of the chromatosome were found, and nucleotide sequences preferred for these structures were also proposed. As a result of the analysis, it was shown that the DNA nucleotide sequence along with the LH amino acid sequence influences the type of binding to the nucleosome. It is assumed that the contribution of the DNA nucleotide sequence and its geometry can be determinative in comparison with the LH amino acid sequence in some cases. Hypotheses for experimental verification have been formulated, according to which the type of LH binding can change with different DNA nucleotide sequences.
About the Authors
T. K. GorkovetsRussian Federation
Bioengineering Department, Faculty of Biology
G. A. Armeev
Russian Federation
Bioengineering Department, Faculty of Biology
K. V. Shaitan
Russian Federation
Bioengineering Department, Faculty of Biology
A. K. Shaytan
Russian Federation
Bioengineering Department, Faculty of Biology
References
1. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.
2. Simpson R.T. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones // Biochemistry. 1978. Vol. 17. N 25. P. 5524–5531.
3. Lyubitelev A.V., Nikitin D.V., Shaytan A.K., Studitsky V.M., Kirpichnikov M.P. Structure and functions of linker histones // Biochemistry (Mosc.). 2016. Vol. 81. N 3. P. 213–223.
4. El Kennani S., Adrait A., Shaytan A.K., Khochbin S., Bruley C., Panchenko A.R., Landsman D., Pflieger D., Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones // Epigenetics Chromatin. 2017. Vol. 10:2.
5. Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome // Proc. Natl. Acad. Sci. U. S. A. 2010. Vol. 107. N 21. P. 9620–9625.
6. Ramakrishnan V., Finch J.T., Graziano V., Lee P.L., Sweet R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding // Nature. 1993. Vol. 362. N 6417. P. 219–223.
7. Brown D.T., Izard T., Misteli T. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo // Nat. Struct. Mol. Biol. 2006. Vol. 13. N 3. P. 250–255.
8. Pruss D., Bartholomew B., Persinger J., Hayes J., Arents G., Moudrianakis E.N., Wolffe A.P. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres // Science. 1996. Vol. 274. N 5287. P. 614–617.
9. Zhou Y.B., Gerchman S.E., Ramakrishnan V., Travers A., Muyldermans S. Position and orientation of the globular domain of linker histone H5 on the nucleosome // Nature. 1998. Vol. 395. N 6700. P. 402–405.
10. Bednar J., Garcia-Saez I., Boopathi R. et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1 // Mol. Cell. 2017. Vol. 66. N 3. P. 384–397
11. Zhou B.-R., Feng H., Kato H., Dai L., Yang Y., Zhou Y., Bai Y. Structural insights into the histone H1-nucleosome complex // Proc. Natl. Acad. Sci. U. S. A. 2013. Vol. 110. N 48. P. 19390–19395.
12. Zhou B.-R., Jiang J., Feng H., Ghirlando R., Xiao T.S., Bai Y. Structural mechanisms of nucleosome recognition by linker histones // Mol. Cell. 2015. Vol. 59. N 4. P. 628–638.
13. Zhou B.-R., Feng H., Ghirlando R., Li S., Schwieters C.D., Bai Y. A Small number of residues can determine if linker histones are bound on or off dyad in the chromatosome // J. Mol. Biol. 2016. Vol. 428. N 20. P. 3948–3959.
14. Cui F., Zhurkin V.B. Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA // Nucleic Acids Res. 2009. Vol. 37. N 9. P. 2818–2829.
15. Öztürk M.A., Pachov G.V., Wade R.C., Cojocaru V. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome // Nucleic Acids Res. 2016. Vol. 44. N 14. P. 6599–6613.
16. Pachov G.V., Gabdoulline R.R., Wade R.C. On the structure and dynamics of the complex of the nucleosome and the linker histone // Nucleic Acids Res. 2011. Vol. 39. N 12. P. 5255–5263.
17. Song F., Chen P., Sun D., Wang M., Dong L., Liang D., Xu R.-M., Zhu P., Li G. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units // Science. 2014. Vol. 344. N 6182. P. 376–380.
18. Rohs R., Jin X., West S.M., Joshi R., Honig B., Mann R.S. Origins of specificity in protein-DNA recognition // Annu. Rev. Biochem. 2010. Vol. 79. P. 233–269.
19. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Res. 2004. Vol. 32. N 5. P. 1792–1797.
20. Cock P.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., de Hoon M.J.L. Biopython: freely available Python tools for computational molecular biology and bioinformatics // Bioinformatics 2009. Vol. 25. N 11. Р. 1422–1423.
21. Webb B., Sali A. Comparative protein structure modeling using MODELLER // Curr. Protoc. Bioinformatics. 2016. Vol. 54. P. 5.6.1–5.6.37.
22. Martí-Renom M.A., Stuart A.C., Fiser A., Sánchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes // Annu. Rev. Biophys. Biomol. Struct. 2000. Vol. 29. P. 291–325.
23. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera — a visualization system for exploratory research and analysis // J. Comput. Chem. 2004. Vol. 25. N 13. P. 1605–1612.
24. Lu X., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures // Nucleic Acids Res. 2003. Vol. 31. N 17. P. 5108–5121.
25. Olson W.K., Gorin A.A., Lu X.-J., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes // Proc. Natl. Acad. Sci. U. S. A. 1998. Vol. 95. N 19. P. 11163–11168.
26. Воеводин В., Жуматий С., Соболев С., Антонов А., Брызгалов П., Никитенко Д., Стефанов К., Воеводин В. Практика суперкомпьютера “Ломоносов” // Открытые системы. СУБД. 2012. № 7 (183). С. 36–39.
Review
For citations:
Gorkovets T.K., Armeev G.A., Shaitan K.V., Shaytan A.K. JOINT EFFECT OF HISTON H1 AMINO ACID SEQUENCE AND DNA NUCLEOTIDE SEQUENCE ON THE STRUCTURE OF CHROMATOSOMES: ANALYSIS BY MOLECULAR MODELING METHODS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(2):99-105. (In Russ.)