Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

РОЛЬ ТРОМБОЦИТОВ В НЕЙРОВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЯХ. ОБЗОР

Полный текст:

Аннотация

Тромбоциты участвуют в процессах воспаления и заживления ран, локально стимулируя активацию иммунного ответа и регенерацию в организме. Ряд воспалительных заболеваний центральной нервной системы, таких как травмы головного мозга, болезнь Альцгеймера и инсульт, характеризуются нарушением проницаемости гемато-энцефалического барьера, при котором клетки крови, в том числе тромбоциты, проникают в нервную ткань. Однако роль тромбоцитов в контексте нейровоспаления остается малоизученной. Недавние исследования показывают, что при патологиях центральной нервной системы активированные тромбоциты выделяют широкий спектр коагуляционных и сосудистых факторов и участвуют в развитии нейрососудистых заболеваний. Кроме того, тромбоциты стимулируют иммунный ответ и регулируют воспаление в центральной нервной системе. Трофические и ростовые факторы, содержащиеся в тромбоцитах, регулируют регенерацию нервной ткани. При активации тромбоциты выделяют нейротрансмиттеры, серотонин, допамин, гистамин и глутамат и могут влиять на работу нейронов при патологиях нервной системы. В обзоре описываются основные аспекты и механизмы участия тромбоцитов в нейровоспалении, а также терапевтическая значимость тромбоцитов для лечения нейродегенеративных заболеваний.

Об авторах

М. С. Духинова
Школа биомедицинских наук, Китайский университет Гонконга
Китай

канд. биомед. наук, науч. сотр. лаборатории нейроиммунологии,

Lo Kwee-Seong Integrated Biomedical Sciences building, Area 39, CUHK, Shatin, New Territories, Hong Kong SAR



Е. Д. Пономарёв
Школа биомедицинских наук, Китайский университет Гонконга
Китай

канд. биол. наук, зав. лабораторией нейроиммунологии,

Lo Kwee-Seong Integrated Biomedical Sciences building, Area 39, CUHK, Shatin, New Territories, Hong Kong SAR



Список литературы

1. McNicol A., Israels S. Platelet dence granules: Structure, function and implications for haemostasis // Thromb. Res. 1999. Vol. 95. N 1. P. 1–8.

2. Harrison P., Cramer E. Platelet α-granules // Blood Rev. 1993. Vol. 7. N 1. P. 52–62.

3. Reed G., Fitzgerald M.L., Polgar J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes // Blood. 2000. Vol. 96. N 10. P. 3334–3342.

4. Varon D., Shai E. Platelets and their microparticles as key players in pathophysiological responses // J. Thromb. Haemost. 2015. Vol. 13. N S1. P. S40–S46.

5. Rondina M., Weyrich A., Zimmerman G. Platelets as cellular effectors of inflammation in vascular diseases // Circ. Res. 2013. Vol. 112. N 11. P. 1506–1519.

6. Swieringa F., Baaten C., Verdoold R., Mastenbroek T., Rijnveld N., van der Laan K., Breel E., Collins P., Lancé M., Henskens Y., Cosemans J., Heemskerk J., van der Meijden P. Platelet control of fibrin distribution and microelasticity in thrombus formation under flow // Arterioscler. Thromb. Vasc. Biol. 2016. Vol. 36. N 4. P. 692–699.

7. Gleissner C., von Hundelshausen P., Ley K. Platelet chemokines in vascular disease // Arterioscler Thromb. Vasc. Biol. 2008. Vol. 28. N 11. P. 1920–1927.

8. Massberg S., Brand K., Grüner S., Page S., Müller E., Müller I., Bergmeier W., Richter T., Lorenz M., Konrad I., Nieswandt B., Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation // J. Exp. Med. 2002. Vol. 196. N 7. P. 887–896.

9. Martínez C., Smith P., Palma-Alvarado V. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update // Front. Physiol. 2015. DOI: 10.3389/fphys.2015.00290.

10. Naidech A., Bendok B., Garg R., Bernstein R., Alberts M., Bleck T., Batjer H. Reduced platelet activity is associated with more intraventricular hemorrhage // Neurosurgery. 2009. Vol. 65. N 4. P. 684–688.

11. Zhang Y., Ying G., Ren C., Jizhang Y., Brogan D., Liu Z., Li S., Ding Y., Borlongan C., Zhang J., Ji X. Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke // Brain Res. 2015. Vol. 1594. P. 267–273.

12. Sehba F., Mostafa G., Friedrich V.J., Bederson J. Acute microvascular platelet aggregation after subarachnoid hemorrhage // J. Neurosurg. 2005. Vol. 102. N 6. P. 1094–1100.

13. Midura E., Jernigan P., Kuethe J., Friend L., Veile R., Makley A., Caldwell C., Goodman M. Microparticles impact coagulation after traumatic brain injury // J. Surg. Res. 2015. Vol. 197. N 1. P. 25–31.

14. Lukasik M., Rozalski M., Luzak B., Michalak S., Kozubski W., Watala C. Platelet activation and reactivity in the convalescent phase of ischaemic stroke // Thromb. Haemost. 2010. Vol. 104. N 3. P. 644–650.

15. Kraft P., Schuhmann M., Fluri F., Lorenz K., Zernecke A., Stoll G., Nieswandt B., Kleinschnitz C. Efficacy and safety of platelet glycoprotein receptor blockade in aged and comorbid mice with acute experimental stroke // Stroke. 2015. Vol. 46. N 12. P. 3502–3506.

16. May A., Seizer P., Gawaz M. Platelets: Inflammatory firebugs of vascular walls // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28. N 3. P. S5–S10.

17. Nguyen K., Hamzeh-Cognasse H., Palle S., AnselmeBertrand I., Chavarin C.P., Pozzetto B., Garraud O., Cognasse F. Role of Siglec-7 in apoptosis in human platelets // PLoS One. 2014. Vol. 9. N. 19. e106239.

18. Nording H., Langer H. Complement links platelets to innate immunity // Semin. Immunol. 2018. Vol. 37. P. 43–52.

19. Li C., Li J., Li Y., Lang S., Yougbare S., Zhu G., Chen P., Ni H. Crosstalk between platelets and the immune system: Old systems with new discoveries // Adv. Hematol. 2012. Vol. 2012. Article ID 384685.

20. Li Z., Yang F., Dunn S., Gross A., Smyth S. Platelets as immune mediators: Their role in host defense responses and sepsis // Thromb. Res. 2011. Vol. 127. N 3. P. 184–188.

21. Wang Z., Zhao O., Zhang D., Sun C., Bao C., Yi M., Xing L., Luo D. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens // Blood Coagul. Fibrinolysis. 2016. Vol. 27. N 6. P. 667–672.

22. Chapman L., Aggrey A., Field D., Srivastava K., Ture S., Yui K., Topham D., Baldwin III W., Morrell C. Platelets present antigen in the context of MHC class I // J. Immunol. 2012. Vol. 189. N. 2. P. 916–923.

23. Tian L., Ma L., Kaarela T., Li Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases // J. Neuroinflammation. 2012. Vol. 9:155.

24. O’Sullivan S., O’Sullivan C., Healy L., Dev K., Sheridan G. Sphingosine 1-phosphate receptors regulate TLR4- induced CXCL5 release from astrocytes and microglia // J. Neurochem. 2018. Vol. 144. N 6. P. 736–747.

25. Skaper S., Facci L., Zusso M., Giusti P. Neuroinflammation, mast cells, and glia: dangerous liaisons // Neuroscientist. 2017. Vol. 23. N 5. P. 478–498.

26. Amor S., Puentes F., Baker D., van der Valk P. Inflammation in neurodegenerative diseases // Immunology. 2010. Vol. 129. N 2. P. 154–169.

27. Veremeyko T., Yung A., Dukhinova M., Kuznetsova I., Pomytkin I., Lyundup A., Strekalova T., Barteneva N., Ponomarev E. Cyclic AMP pathway suppress autoimmune Neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation // Front. Immunol. 2018. DOI: 10.3389/fimmu.2018.00050.

28. Mracsko E., Javidi E., Na S.Y., Kahn A., Liesz A., Veltkamp R. Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice // Stroke. 2014. Vol. 45. N 7. P. 2107–2114.

29. Almolda B., González B., Castellano B. Are microglial cells the regulators of lymphocyte responses in the CNS? // Front. Cell. Neurosci. 2015. Vol. 9:440.

30. Frelinger A., Torres A., Caiafa A., Morton C., BernyLang M., Gerrits A., Carmichael S., Neculaes V., Michelson A. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation. Procoagulant markers, growth factor release and cell proliferation // Platelets. 2016. Vol. 27. N 2. P. 128–135.

31. Jonnalagadda D., Izu L., Whiteheart S. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner // Blood. 2012. Vol. 120. N 26. P. 5209–5216.

32. Dinkla S., van Cranenbroek B., van der Heijden W., He X., Wallbrecher R., Dumitriu IE., Koenen H., Joosten I. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin // Blood. 2016. Vol. 127. N 16. P. 1976–1986.

33. Bhat S., Goel R., Shukla R., Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension // Brain Behav. Immun. 2017. Vol. 59. P. 173–189.

34. Giles J., Greenhalgh A., Denes A., Nieswandt B., Coutts G., McColl B., Allan S. Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbα // Immunology. 2018. Vol. 154. N 2. P. 322–328.

35. Schuhmann M., Guthmann J., Stoll G., Nieswandt B., Kraft P., Kleinschnitz C. Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke // J. Neuroinflammation. 2017. Vol. 14:18.

36. Vasina E., Cauwenberghs S., Feijge M., Heemskerk J., Weber C., Koenen R. Microparticles from apoptotic platelets promoteresident macrophage differentiation // Cell Death Dis. 2011. Vol. 2. N 9. e210.

37. Starossom S., Veremeyko T., Yung Y., Dukhinova M., Au C, Lau A., Weiner H., Ponomarev E. Platelets Play Differential role during the initiation and progression of autoimmune neuroinflammation // Circ. Res. 2015. Vol. 117. N 9. P. 779–792.

38. Sheremata W., Jy W., Horstman L., Ahn Y., Alexander J., Minagar A. Evidence of platelet activation in multiple sclerosis // J. Neuroinflammation. 2008. Vol. 5:27.

39. Starossom S., Veremeyko T., Dukhinova M., Yung A., Ponomarev E. Glatiramer acetate (copaxone) modulates platelet activation and inhibits thrombin-induced calcium influx: possible role of copaxone in targeting platelets during autoimmune neuroinflammation // PLoS One. 2014. Vol. 9. N 5. e96256.

40. Sotnikov I., Veremeyko T., Starossom S., Barteneva N., Weiner H., Ponomarev E. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation // PLoS One. 2013. Vol. 8. N 3. e58979.

41. Singh M., Davidson D., Jackson J., Singh V., Silva J., Ramirez S., Maggirwar S. Characterization of plateletmonocyte complexes in HIV-1-infected individuals: possible role in HIV-associated neuroinflammation // J. Immunol. 2014. Vol. 192. N 10. P. 4674–4684.

42. Franks Z., Campbell R., Weyrich A., Rondina M. Platelet–leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke // Ann. N.Y. Acad. Sci. 2010. Vol. 1207. P. 11–17.

43. Fang W., Zhang R., Sha L.. Lv P., Shang E., Han D., Wei J., Geng X., Yang Q., Li Y. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain // J. Neurochem. 2014. Vol. 128. N 5. P. 662–671.

44. Barradas M., Mikhailidis D. The use of platelets as models for neurons: possible applications to the investigation of eating disorders // Biomed. Pharmacother. 1993. Vol. 47. N 1. P. 11–18.

45. Rainesalo S., Keranena T., Saransaari P., Honkaniemi J. GABA and glutamate transporters are expressed in human platelets // Brain Res. Mol. Brain Res. 2005. Vol. 141. N 2. P. 161–165.

46. Mercado C., Kilic F. Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels // Mol. Interv. 2010. Vol. 10. N 4. P. 231–241.

47. Kaneez F., Saeed S. Investigating GABA and its function in platelets as compared to neurons // Platelets. 2009. Vol. 20. N. 5. P. 328–333.

48. Goubau C., Buyse G., Di Michele M, Van Geet C., Freson K. Regulated granule trafficking in platelets and neurons: A common molecular machinery // Eur. J. Paediatr. Neurol. 2013. Vol. 17. N 2. P. 117–125.

49. Bartsch I., Sandrock, K., Lanza F., Nurden P., Hainmann I., Pavlova A., Greinacher A., Tacke U., Barth M., Busse A., Oldenburg J., Bommer M., Strahm B., Superti-Furga A., Zieger B. Deletion of human GP1BB and SEPT5 is associated with Bernard-Soulier syndrome. Platelet secretion defect. Polymicrogyria, and developmental delay // Thromb. Haemost. 2011. Vol. 106. N 3. P. 475–483.

50. Pandey G., Ren X., Dwivedi Y., Pavuluri M. Decreased protein kinase C (PKC) in platelets of pediatric bipolar patients: effect of treatment with mood stabilizing drugs // J. Psychiatr. Res. 2008. Vol. 42. N 2. P. 106–116.

51. Cupello A., Favale E., Audenino D., Scarrone S., Gastaldi S., Albano C. Decrease of serotonin transporters in blood platelets after epileptic seizures // Neurochem. Res. 2005. Vol. 30. N 4. P. 425–458.

52. Bijl N., Thys C., Wittevrongel C., De la Marche W., Devriendt K., Peeters H., Van Geet C., Freson K. Platelet studies in autism spectrum disorder patients and first-degree relatives // Mol. Autism. 2015. Vol. 6:57.

53. Chacón-Fernández P., Säuberli K., Colzani M., Moreau T., Ghevaert C., Barde Y. Brain-derived Neurotrophic Factor in Megakaryocytes // J. Biol. Chem. 2016. Vol. 291. N 19. P. 9872–9881.

54. Gowert N., Donner L., Chatterjee M., et al. Blood platelets in the progression of Alzheimer’s disease // PLoS One. 2014. Vol. 9. N 2. e90523.

55. Vignini A., Morganti S., Salvolini E., Sartini D., Luzzi S., Fiorini R., Provinciali L., Di Primio R., Mazzanti L., Emanuelli M. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer’s disease and Frontotemporal lobar degeneration: A Real-time PCR study // Exp. Gerontol. 2013. Vol. 48. N 12. P. 1505–1508.

56. Kokjohn T., Van Vickle G., Maarouf C., Kalback W., Hunter J., Daugs I., Luehrs D., Lopez J., Brune D., Sue L., Beach T., Castaño E., Roher A. Chemical characterization of pro-inflammatory amyloid-beta peptides in human atherosclerotic lesions and platelets // Biochim. Biophys. Acta. 2011. Vol. 1812. N 11. P. 1508–1514.

57. Kucheryavykh L., Dávila-Rodríguez J., RiveraAponte D., Zueva L., Washington A., Sanabria P., Inyushin M. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis // Brain Res. Bull. 2017. Vol. 128. P. 98–105.

58. Friedrich V., Flores R., Muller A., Sehba F. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage // Neuroscience. 2010. Vol. 165. N. 3. P. 968–975.

59. Langer H., Choi E., Zhou H. et al. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis // Circ. Res. 2012. Vol. 110. N. 9. P. 1202–1210.

60. Cognasse F., Nguyen K., DamienP., McNicol A., Pozzetto B., Hamzeh-Cognasse H., Garraud O. The inflammatory role of platelets via their TLRs and siglec receptors // Front. Immunol. 2015. Vol. 6:83.

61. Schnaar R., Gerardy-Schahn R., Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration // Physiol. Rev. 2014. Vol. 94. N 2. P. 461–518.

62. Yamamoto H., Gurney M. Human platelets contain brain-derived neurotrophic factor // J. Neurosci. 1990. Vol. 10. N 11. P. 3469–3478.

63. Kniewallner, K., Grimm N., Humpel N. Platelet-derived nerve growth factor supports the survival of cholinergic neurons in organotypic rat brain slices // Neurosci. Lett. 2014. Vol. 574. P. 64–69.

64. Peng F., Dhillon N., Callen S., Yao H., Bokhari S., Zhu X., Baydoun H., Buch S. Platelet-derived growth factor protects neurons against gp120-mediated toxicity // J. Neurovirol. 2008. Vol. 14. N 1. P. 62–72.

65. Peng F., Yao H., Akturk H., Buch S. Platelet-derived growth factor CC-mediated neuroprotection against HIV Tat involves TRPC-mediated inactivation of GSK 3beta // PLoS One. 2012. Vol. 7. N 10. e47572.

66. Gouel F., Do Van B., Chou M., Jonneaux A., Moreau C., Bordet R., Burnouf T., Devedjian J., Devos D. The protective effect of human platelet lysate in models of neurodegenerative disease: involvement of the Akt and MEK pathways // J. Tissue Eng. Regen. Med. 2017. Vol. 11. N 11. P. 3236–3240.

67. Hayon Y., Dashevsky O., Shai E., Varon D., Leker R. Platelet lysates stimulate angiogenesis, neurogenesis and neuroprotection after stroke // Thromb. Haemost. 2013. Vol. 110. N 2. P. 323–330.

68. Kazanis I., Feichtner M., Lange S., Rotheneichner P., Hainzl S., Öller M., Schallmoser K., Rohde E., Reitsamer H., Couillard-Despres S., Bauer H., Franklin R., Aigner L., Rivera F. Lesion-induced accumulation of platelets promotes survival of adult neural stem / progenitor cells // Exp. Neurol. 2015. Vol. 269. P. 75–89.

69. Au A. E.-L., Sashindranath M., Borg R., Kleifeld O., Andrews R., Gardiner E., Medcalf R., Samson A. Activated platelets rescue apoptotic cells via paracrine activation of EGFR and DNA-dependent protein kinase // Cell Death Dis. 2014. Vol. 5. N. 9. e1410.

70. Wang Y., Reheman A., Spring C., Kalantari K., Marshall A., Wolberg A., Gross P., Weitz J., Rand M., Mosher D., Freedman J., Ni H. Plasma fibronectin supports hemostasis and regulates thrombosis // J. Clin. Invest. 2014. Vol. 124. N. 10. P. 4281–4293.

71. Blair P., Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates // Blood Rev. 2009. Vol. 23. N. 4. P. 177–189.

72. Morrissey J. Polyphosphate: a link between platelets, coagulation and inflammation // Expert. Rev. Hematol. 2012. Vol. 95. N. 4. P. 346–352.

73. Ziu E., Mercado C., Li Y., Singh P., Ahmed B., Freyaldenhoven S., Lensing S., Ware J., Kilic F. Down-regulation of the serotonin transporter in hyperreactive platelets counteracts the pro-thrombotic effect of serotonin // J. Mol. Cell. Cardiol. 2012. Vol. 52. N. 5. P. 1112–1121.

74. Mitsios J., Vini M., Stengel D., Ninio E., Tselepis A. Human platelets secrete the plasma type of platelet-activating factor acetylhydrolase primarily associated with microparticles // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. N 8. P. 1907–1913.

75. Ge S., Wittenberg N., Haynes C. Quantitative and real-time detection of secretion of chemical messengers from individual platelets // Biochemistry. 2008. Vol. 47. N. 27. P. 7020–7024.

76. Nurden A. Platelets, inflammation and tissue regeneration // Thromb. Haemost. 2011. Vol. 105. N S6. P. S13–S33.

77. Bell J., Thomas T., Lass E., Ai J., Wan H., Lifshitz J., Baker A., Macdonald R. Platelet-mediated changes to neuronal glutamate receptor expression at sites of microthrombosis following experimental subarachnoid hemorrhage // J. Neurosurg. 2014. Vol. 121. N 6. P. 1424–1431.


Для цитирования:


Духинова М.С., Пономарёв Е.Д. РОЛЬ ТРОМБОЦИТОВ В НЕЙРОВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЯХ. ОБЗОР. Вестник Московского университета. Серия 16. Биология. 2018;73(3):125-131.

For citation:


Dukhinova M.S., Ponomarev E.D. ROLE OF PLATELETS IN NEUROINFLAMMATORY DISORDERS. A REVIEW. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(3):125-131. (In Russ.)

Просмотров: 165


ISSN 0137-0952 (Print)