Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

КИНЕТИКА ИНДУКЦИИ ФЛУОРЕСЦЕНЦИИ В МЕМБРАННЫХ ПРЕПАРАТАХ ФОТОСИСТЕМЫ 2 С ГЕТЕРОГЕННЫМИ КЛАСТЕРАМИ МЕТАЛЛОВ (Mn/Fe) В КИСЛОРОД-ВЫДЕЛЯЮЩЕМ КОМПЛЕКСЕ

Аннотация

Электронный транспорт в фотосистеме 2 (ФС2) шпината с кислород-выделяющим комплексом (КВК), содержащим гетерогенные кластеры металлов 2Mn2Fe и 3Mn1Fe, был исследован с применением метода измерения кинетики индукции флуоресценции (КИФ). Препараты ФС2(2Mn,2Fe) и ФС2(3Mn,1Fe) были синтезированы из препаратов ФС2 без кальция в КВК (ФС2(-Са)). Мы установили, что КИФ в препаратах ФС2(2Mn,2Fe) имеет форму, аналогичную форме КИФ в препаратах ФС2 без кальция, но с меньшим выходом флуоресценции. Наши результаты свидетельствуют о наличии электронного транспорта от кластера металлов в КВК к первичному пластохинонному акцептору электронов QА, как и в препаратах ФС2(-Са), т.е. свидетельствуют об окислении молекул воды либо гетерогенным кластером, либо димером марганца. Кроме того, эти данные свидетельствуют о том, что частичное замещение катионов марганца в КВК катионами железа не оказывает влияния на перенос электрона на акцепторной стороне ФС2. Установлено, что в препаратах ФС2(3Mn,1Fe) форма КИФ аналогична форме КИФ в ФС2(2Mn,2Fe), но имеет немного больший уровень максимального выхода флуоресценции Fmax. В присутствии экзогенного кальция скорость переноса электронов в препаратах ФС2(3Mn,1Fe) значительно (в два раза) возрастает, тогда как в ФС2(2Mn,2Fe) кальций практически не влияет на электронный транспорт. В ФС2 без катионов марганца в КВК (ФС2(-Mn)) КИФ достигает максимума (так называемый пик К), после чего уровень выхода флуоресценции снижается в результате окисления восстановленного первичного пластохинона QА - и отсутствия притока электронов c донорной стороны ФС2. Включение катионов железа вместо катионов марганца в препараты ФС2(-Mn) приводит к насыщению флуоресценции и исчезновению пика К, вероятно, в результате замедления процесса рекомбинации зарядов между восстановленным пластохиноном QА - и окисленным тирозином YZ +•, являющимся переносчиком электронов между КВК и первичным донором электронов Р680.

Об авторах

Л. Н. Давлетшина
Московский государственный университет имени М.В. Ломоносова
Россия

канд. биол. наук, ст. науч. сотр. кафедры биофизики биологического факультета,

119234, г. Москва, Ленинские горы, д. 1, стр. 12



Б. К. Семин
Московский государственный университет имени М.В. Ломоносова
Россия

докт. биол. наук, вед. науч. сотр. кафедры биофизики биологического факультета,

119234, г. Москва, Ленинские горы, д. 1, стр. 12



Список литературы

1. Umena Y., Kawakami K., Shen J.-R., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å // Nature. 2011. Vol. 473. N 7345. P. 55–65.

2. Armstrong F.A. Why did Nature choose manganese to make oxygen? // Philos. T. Roy Soc. B. 2008. Vol. 363. N 1494. P. 1263–1270.

3. Herbert D.E., Lionetti D., Rittle J., Agapie T. Heterometallic triiron-oxo/hydroxo clusters: effect of redox-inactive metals // J. Am. Chem. Soc. 2013. Vol. 135. N 51. P. 19075– 19078.

4. Singh A., Spiccia L. Water oxidation catalysts based on abundant1st row transition metals // Coordin. Chem. Rev. 2013. Vol. 257. N 17–18. P. 2607–2622.

5. Semin B.K., Parak F. Coordination sphere and structure of the Mn cluster of the oxygen-evolving complex in photosynthetic organisms // FEBS Lett. 1997. Vol. 400. N 3. P. 259–262.

6. Semin B.K., Ghirardi M.L., Seibert M. Blocking of electron donation by Mn(II) to YZ• following incubation of Mn-depleted photosystem II membranes with Fe(II) in the light // Biochemistry. 2002. Vol. 41. N 18. P. 5854–5864.

7. Semin B.K., Seibert M. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation // J. Bioenerg. Biomembr. 2016. Vol. 48. N 3. P. 227–240.

8. Semin B.K., Davletshina L.N., Seibert M., Rubin A.B. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity // J. Photochem. Photobiol. B. 2018. Vol. 178. P. 192–200.

9. Ghanotakis D.F., Babcock G.T. Hydroxylamine as an inhibitor between Z and P680 in photosystem II // FEBS Lett. 1983. Vol. 153. N 1. P. 231–234.

10. Porra R.J., Tompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy // Biochim. Biophys. Acta. 1989. Vol. 975. N 3. P. 384–394.

11. Armstrong J.M. The molar extinction coefficient of 2,6-dichlorophenolindophenol // Biochim. Biophys. Acta. 1964. Vol. 86. N 1. P. 194–197.

12. Preston C., Seibert M. The carboxyl modifier 1-ethyl3-[3-(dimethylamino) propyl]carbodiimide (EDC) inhibits half of the high-affinity manganese-binding site in photosystem II membrane fragments // Biochemistry. 1991. Vol. 30. N 40. P. 9615–9624.

13. Ono T., Inoue Y. Abnormal redox reactions in photosynthetic O2-evolving centers in NaCl/EDTA-washed PS II A dark-stable EPR multiline signal and an unknown positive charge accumulator // Biochim. Biophys. Acta. 1990. Vol. 1020. N 3. P. 269–277.

14. Semin B.K., Lovyagina E.R., Timofeev K.N., Ivanov I.I., Rubin A.B., Seibert M. Iron blocking the high-affinity Mnbinding site in photosystem II facilitates identification of the type of hydrogen bond participating in proton-coupled electron transport via YZ // Biochemistry. 2005. Vol. 44. N 28. P. 9746–9757.

15. Strasser R.J., Govindjee. On the O–J–I–P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii // Research in Photosynthesis / Ed. M. Murata. Dordrecht: Kluwer Academic Publ., 1992. Vol. 2. P. 29–32.

16. Semin B.K., Davletshina L.N., Ivanov I.I., Rubin A.B., Seibert M. Uncoupling of processes of molecular synthesis and electron transport in the Ca2+-depleted PSII membranes // Photosynth. Res. 2008. Vol. 98. N 1–3. P. 235–249.

17. Semin B.K., Davletshina L.N., Timofeev K.N., Ivanov I.I., Rubin A.B., Seibert M. Production of reactive oxygen species in decoupled, Ca2+-depleted PSII and their use in assigning a function to chloride on both sides of PSII // Photosynth. Res. 2013. Vol. 117. N 1–3. P. 385–399.

18. Johnson G.N., Rutherford A.W., Krieger A. A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution // Biochim. Biophys. Acta. 1995. Vol. 1229. N 2. P. 202–207.

19. Roose J.L., Frankel L.K., Bricker T.M. Documentation of significant electron transport defects on the reducing side of photosystem I upon removal of the PsbP and PsbQ extrinsic proteins // Biochemistry. 2010. Vol. 49. N 1. P. 36–41.

20. Semin B.K., Davletshina L.N., Mamedov M.D. Effect of different methods of Ca2+ extraction from PSII oxygen evolving complex on the QA-oxidation kinetics // Photosynth. Res. 2018. Vol. 136. N 1. P. 83–91.


Рецензия

Для цитирования:


Давлетшина Л.Н., Семин Б.К. КИНЕТИКА ИНДУКЦИИ ФЛУОРЕСЦЕНЦИИ В МЕМБРАННЫХ ПРЕПАРАТАХ ФОТОСИСТЕМЫ 2 С ГЕТЕРОГЕННЫМИ КЛАСТЕРАМИ МЕТАЛЛОВ (Mn/Fe) В КИСЛОРОД-ВЫДЕЛЯЮЩЕМ КОМПЛЕКСЕ. Вестник Московского университета. Серия 16. Биология. 2018;73(3):141-145.

For citation:


Davletshina L.N., Semin B.K. FLUORESCENCE INDUCTION KINETICS IN THE MEMBRANE PREPARATION OF PHOTOSYSTEM II WITH HETEROGENЕOUS METAL CLUSTERS (Mn/Fe) IN THE OXYGEN-EVOLVING COMPLEX. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(3):141-145. (In Russ.)

Просмотров: 274


ISSN 0137-0952 (Print)