Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

ECOLOGICAL PLASTICITY OF THE PHOTOSYNTHETIC APPARATUS OF HIBISCUS SYRIACUS L. UNDER PRESSURE OF HIGH TEMPERATURE, INSOLATION AND AIR POLLUTION

Abstract

Integrated effect of high temperature, insolation and anthropogenic pollution on pigment content, net oxygen production and dark respiration rates of Hibiscus syriacus L. is described in the paper. There were three observation sites under the study: Tashkent Botanical Garden, public garden in central part of Tashkent city and mountain holiday camp. High adaptive potential of H. syriacus L. was revealed; it is recognized as well adapted to environmental stress factors of arid and semiarid zone under good irrigation. Ecological plasticity of photosynthetic apparatus of hibiscus plays key role in the adaptation. It was revealed, that plants under the shade (in Tashkent Botanical Garden) had long, wide and thin leaves, recognized as manifestation of sciomorphosis. Heliomorphosis features of hibiscus’ leaves were identified in mountains under the high solar irradiation; there were thickened and compacted leaves of small sizes. Such leaf structure modifications have adaptive significance – it is for strengthening of photosynthetic capacity to compensate deficiency in sun light (in case of sciomorphosis); and on the contrary, – it is for shading of sensitive to redundant solar radiation photosynthetic elements to protect from oxidative damages (in case of heliomorphosis). Thus, the plant needs in carbon dioxide assimilation and organic matter production for maintenance of constant energy balance under different stress environment are provided. It was revealed that unfavorable (extreme) environment improved the resistance of dark respiration and net production of oxygen to temperature injuries (the worse environment, the higher plant resistance to temperature injuries). Besides, the higher resistance was detected for mature age leaves of H. syriacus in comparison with young ones. Thus, plants adapt to probable temperature drops gradually during their ontogenesis. Net oxygen production rate of H. syriacus (measured at optimal conditions – +27°C and 635–650 nm) was of the same level in different sites under the study during all the time of active vegetation; it was about 0,20±0,05 μmol О2/(dm2·s). It is considered as norm of reaction of net production (visible photosynthesis) rate of H. syriacus and as specific feature of its photosynthetic apparatus.

About the Authors

N. G. Аkinshina
Mirzo Ulugbek National University of Uzbekistan
Uzbekistan
100174, Tashkent, University street 4


A. A. Аzizov
Mirzo Ulugbek National University of Uzbekistan
Uzbekistan
100174, Tashkent, University street 4


N. I. Shtonda
Academician F.N. Rusanov Tashkent Botanical Garden of AS of RUz
Uzbekistan
100125, Tashkent, Bogishamol street 232


A. I. Khalmurzayeva
Academician F.N. Rusanov Tashkent Botanical Garden of AS of RUz
Uzbekistan
100125, Tashkent, Bogishamol street 232


N. Sh. Rakhmatullina
Mirzo Ulugbek National University of Uzbekistan
Uzbekistan
100174, Tashkent, University street 4


References

1. Hsu R., Hsu Y., Chen S., Fu C., Yu J., Chang F., Chen Y., Liu J., Ho J., Yu C. The triterpenoids of Hibiscus syriacus induce apoptosis and inhibit cell migration in breast cancer cells // BMC Complem. Altern. M. 2015. 15:65.

2. Shi L.S., Wu C.H., Yang T.C., Yao C.W., Lin H.C., Chang W.L. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus // Fitoterapia. 2014. Vol. 97. Р. 184–191.

3. Yoo I.D., Yun B.S., Lee I.K., Ryoo I.J., Choung D.H., Han K.H. Three naphthalenes from root bark of Hibiscus syriacus // Phytochemistry. 1998. Vol. 47. N 5. P. 799–802.

4. Yun B.S., Ryoo I.J., Lee I.K., Park K.H., Choung D.H., Han K.H., Yoo I.D. Two bioactive pentacyclic triterpene esters from the root bark of Hibiscus syriacus // J. Nat. Prod. 1999. Vol. 62. N 5. P. 764–766.

5. Lee S.J., Yun Y.S., Lee I.K., Ryoo I.J., Yun B.S., Yoo I.D. An antioxidant lignan and other constituents from the root bark of Hibiscus syriacus // Planta Med. 1999. Vol. 65. N 7. P. 658–660.

6. Yun B.S., Lee I.K., Ryoo I.J., Yoo I.D. Coumarins with monoamine oxidase inhibitory activity and antioxidative coumarino-lignans from Hibiscus syriacus // J. Nat. Prod. 2001. Vol. 64. N 9. P. 1238–1240.

7. Kwon S.W., Hong S.S., Kim J.I., Ahn I.H. Antioxidant properties of heat-treated Hibiscus syriacus // Biol. Bull. Russ. Acad. Sci. 2003. Vol. 30. N 1. P. 15–16

8. Kwon S., Kwon H.J., Kim K.S. Calcium extends flower life in Hibiscus syriacus L. // Hortic. Environ. Biote. 2010. Vol. 51. N 4. P. 275–283.

9. Venkatesh S., Thilagavathi J., Shyam Sundar D. Antidiabetic activity of flowers of Hibiscus rosa sinensis // Fitoterapia. 2008. Vol. 79. P. 79–81.

10. Kim K.D., Lee E.J. Potential tree species for use in the restoration of unsanitary landfills // Environ. Management. 2005. Vol. 36. N 1. P. 1–14.

11. Paredes M., Quiles M.J. The effects of cold stress on photosynthesis in Hibiscus plants // PLoS ONE. 2015. Vol. 10. N 9. e0137472.

12. Egilla J.N., Davies F.T., Boutton T.W. Drought stress influences leaf water content, photosynthesis, and wateruse efficiency of Hibiscus rosa-sinensis at three potassium concentrations // Photosynthetica. 2005. Vol. 43. N 1. P. 135–140.

13. Киселева Г.К., Ненько Н.И., Тыщенко Е.Л. Оценка засухоустойчивости интродуцированных сортов гибискуса сирийского в Краснодарском крае // Плод. виногр. юга России. 2012. № 15(3). С. 124–130.

14. Тыщенко Е.Л., Киселева Г.К., Тимкина Ю.В. Анатомо-морфологические особенности строения листовой пластинки Hibiscus syriacus L., в связи с приспособительной реакцией сортов к природно-климатическим условиям юга России // Вест. ВГУ. Сер.: Геогр. Геоэкол. 2011. № 2. С. 67–69.

15. Семихатова О.А., Чиркова Т.В. Физиология дыхания растений. Учеб. пособие. СПб.: СПбГУ, 2001. 220 с.

16. Markesteijn L., Lourens P., Frans B. Light-dependent leaf trait variation in 43 tropical dry forest tree species // Am. J. Bot. 2007. Vol. 94. N 4. P. 515–525.

17. Rohacek K., Bartak M. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications // Photosynthetica. 1999. Vol. 37. N 3. P. 339–363.

18. Грязнов В.П., Сиротина Л.В. Практикум по физиологии растений. Белгород: Бел.ГУ, 2000. 68 с.

19. Васфилов С.П. Анализ причин изменчивости отношения сухой массы листа к его площади у растений // Ж. общ. биол. 2011. Т. 72. № 6. С. 436–454.

20. Azizov A., Tauschke M., Lentzsch P. et al. Verfahren zur Bewertung der Vitalit t chlorophylltragender biologischer Proben. Deutsches Patentant. DE 112006000480. IPC: G01N 33/483. INNO-Concept GmbH, Strausberg, DE. Anmeldung 06.03.2006. Ver ffentlichung 30.04.2015.

21. Valladares F., Wright J.S., Lasso E., Kitajima K., Pearcy R. W. Plastic phenotypic responses to light of 16 congeneric shrubs from a Panamanian rainforest // Ecology. 2000. Vol. 81. N 7. P. 1925–1936.

22. Горышина Т.К. Фотосинтетический аппарат растений и условия среды. Л.: Изд-во Лен. ун-та, 1989. 204 с.

23. Sun X., Wen T. Physiological roles of plastid terminal oxidase in plant stress responses // J. Biosci. 2011. Vol. 36. N 5. Р. 951–956.

24. Lichtenthaler H.K. Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance // Photosynth. Res. 2007. Vol. 92. N 2. P. 163–179.

25. Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. Heat stress: an overview of molecular responses in photosynthesis // Photosynth. Res. 2008. Vol. 98. N 1–3. P. 541–550.


Review

For citations:


Аkinshina N.G., Аzizov A.A., Shtonda N.I., Khalmurzayeva A.I., Rakhmatullina N.Sh. ECOLOGICAL PLASTICITY OF THE PHOTOSYNTHETIC APPARATUS OF HIBISCUS SYRIACUS L. UNDER PRESSURE OF HIGH TEMPERATURE, INSOLATION AND AIR POLLUTION. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(3):197-207. (In Russ.)

Views: 383


ISSN 0137-0952 (Print)