INVESTIGATION OF CHARACTERISTICS OF MOTOR-IMAGERY BRAIN–COMPUTER INTERFACE WITH QUICK-RESPONSE TACTILE FEEDBACK
Abstract
One of the approaches in rehabilitation after a stroke is mental training by representation of the movement using brain-computer interface (BCI), which allows to control the result of every attempt of imaginary movement. BCI technology based on online EEG analysis, detecting moments of imaginary movement representation and presenting these events in a form of changing scenes on the computer screen or triggering electro-mechanical devices, which essentially is a feedback. Traditionally used visual feedback is not always optimal for post-stroke patients. Earlier, we studied the effectiveness of tactile feedback, triggered only after a long-time mental representation of the movement, for several seconds or more. In this paper, the efficiency of fast tactile feedback with motor imaginary based BCI was investigated during classification of short (0.5 s) EEG segments. It was shown that fast tactile feedback is not inferior to the visual feedback and that it is possible to create BCI with tactile feedback which allow fast reward of physiologically effective attempts of motor imaginary and operate with acceptable accuracy for practical use. Furthermore, under certain conditions, tactile feedback can lead to the greater degree of sensorimotor rhythm desynchronization in subjects, in comparison with the visual feedback, which can serve as a basis for constructing effective neurointerface training system.
About the Authors
M. V. LukoyanovRussian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
Minin & Pozharsky pl. 10/1, Nizhny Novgorod, 603005
S. Y. Gordleeva
Russian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
N. A. Grigorev
Russian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
A. O. Savosenkov
Russian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
Y. A. Lotareva
Russian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
A. S. Pimashkin
Russian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
A. Y. Kaplan
Russian Federation
Gagarin pr. 23, Nizhny Novgorod, 603950
Leninskiye Gory 1–12, Moscow, 119234
Departments of Human and Animal Physiology, School of Biology
References
1. Скворцова В.И., Стаховская Л.В., Пряникова Н.А., Мешкова К.С. Вторичная профилактика инсульта // Cons. Medicum. 2006. Т. 8. № 12. С. 70–73.
2. Connell L.A., Lincoln N.B., Radford K.A. Somatosensory impairment after stroke: frequency of different deficits and their recovery // Clin. Rehabil. 2008. Vol. 22. N 8. P. 758–767.
3. Иванова Г.Е., Суворов А.Ю., Стаховская Л.В., Варако Н.А., Ковязина М.С., Бушков Ф.А. Использование тренажера с многоканальной биологической обратной связью “Имк-Экзоскелет” в комплексной программе реабилитации больных после инсульта // Журн. высш. нерв. деят. 2017. Т. 67. № 4. С. 464–472.
4. Cifu D.X., Stewart D.G. Factors affecting functional outcome after stroke: a critical review of rehabilitation interventions // Arch. Phys. Med. Rehabil. 1999. Vol. 80. N 5. P. 35–39.
5. Frolov A.A., Mokienko O.A., Lyukmanov R.K., et al. Preliminary results of a controlled study of BCI-exoskeleton technology efficacy in patients with poststroke arm paresis // Bull. Russ. State Med.Univ. 2016. N 2. P. 16–23.
6. Vasilyev A., Liburkina, S., Yakovlev, L., Perepelkina, O., Kaplan, A. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates // Neuropsychologia. 2017. Vol. 97. P. 56–65.
7. Kaplan A.Y. Neurophysiological foundations and practical realizations of the brain–machine interfaces in the technology in neurological rehabilitation // Hum. Physiol. 2016. Vol. 42. N 1. P. 103–110.
8. Frolov A.A., Biryukova E.V., Bobrov P.D., Mokienko O.A., Platonov A.K., Pryanichnikov V.E., Chernikova L.A. Principles of neurorehabilitation based on the brain-computer interface and biologically adequate control of the exoskeleton // Hum. Physiol. 2013. Vol. 39. N 2. P. 196–208.
9. Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation // J. Neural. Transm. 2007. Vol. 114. N 10. P. 1265–1278.
10. Simmons L., Sharma N., Baron J.-C., Pomeroy V.M. Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects // Neurorehabil. Neural. Repair. 2008. Vol. 22. N 5. P. 458–467.
11. Vuckovic A., Osuagwu B.A. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery // Clin. Neurophysiol. 2013. Vol. 124. N 8. P. 1586–1595.
12. Brouwer A.-M., van Erp J.B.F. A tactile P300 braincomputer interface // Front. Neurosci. 2010. Vol. 4:19.
13. van der Waal M., Severens M., Geuze J., Desain P. Introducing the tactile speller: an ERP-based brain–computer interface for communication // J. Neural. Eng. 2012. Vol. 9. N 4:045002.
14. Chatterjee A., Aggarwal V., Ramos A., Acharya S., Thakor N.V. A brain-computer interface with vibrotactile biofeedback for haptic information // J. Neuroeng. Rehabil. 2007. Vol. 4:40.
15. Muramatsu Y., Niitsuma M., Thomessen T. Perception of tactile sensation using vibrotactile glove interface // IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom) / Ed. S. Hassler. New Jersey: IEEE, 2012. P. 621–626.
16. Thurlings M.E., van Erp J.B.F., Brouwer A.M., Werkhoven P. Controlling a tactile ERP-BCI in a dual task // IEEE Trans. Comput. Intell. AI Games. 2013. Vol. 5. N 2. P. 129–140.
17. Yajima H., Makino S., Rutkowski T. M. P300 responses classification improvement in tactile BCI with touch-sense glove // Signal and Information Processing Association Annual Summit and Conference (APSIPA) / Ed. S. Hassler. New Jersey: IEEE, 2014. P. 1–7.
18. Либуркина С.П., Васильев А.Н., Гордлеева С.Ю., Каплан А.Я. Интерфейс мозг-компьютер на основе представления движения с вибротактильной модальностью стимулов // Журн. высш. нерв. деят. 2017. Т. 67. № 4. С. 414–429.
19. Lukoyanov M.V., Gordleeva S.Y., Pimashkin A.S., Grigor’ev N.A., Savosenkov A.V., Motailo A., Kazantsev V.B., Kaplan A.Y. The efficiency of the brain-computer interfaces based on motor imagery with tactile and visual feedback // Hum. Physiol. 2018. Vol. 44. N 3. P. 280–288.
20. Oldfield R.C. The assessment and analysis of handedness: The Edinburgh inventory // Neuropsychologia. 1971. Vol. 9. N 1. P. 97–113.
21. Доскин В.А., Лаврентьева Н.А., Мирошников М.П., Шарай В.Б. Тест дифференцированной самооценки функционального состояния // Вопр. психол. 1973. № 6. С. 141–145.
22. Ahn M., Jun S. C. Performance variation in motor imagery brain–computer interface: a brief review // J. Neurosci. Methods. 2015. Vol. 243. P. 103–110.
23. Gordleeva S.Y., Lukoyanov M.V., Mineev S.A., Khoruzhko M.A., Mironov V.I., Kaplan A.Y., Kazantsev V.B. Exoskeleton control system based on motor-imaginary brain–computer interface // Совр. технол. в мед. 2017. Vol. 9. N 3. P. 31–36.
24. Barsotti M., Leonardis D., Vanello N., Bergamasco M., Frisoli A. Effects of continuous kinaesthetic feedback based on tendon vibration on motor imagery BCI performance // IEEE Trans. Neural Syst. Rehabil. Eng. 2018. Vol. 26. N 1. P. 105–114.
25. Yao L., Xie T., Shu X., Sheng X., Zhang D., Zhu X. Long-term paired sensory stimulation training for improved motor imagery BCI performance via Pavlovian conditioning theory // 7th International IEEE/EMBS Conference on Neural Engineering (NER) / Ed. S. Hassler. New Jersey: IEEE, 2015. P. 90–93.
Review
For citations:
Lukoyanov M.V., Gordleeva S.Y., Grigorev N.A., Savosenkov A.O., Lotareva Y.A., Pimashkin A.S., Kaplan A.Y. INVESTIGATION OF CHARACTERISTICS OF MOTOR-IMAGERY BRAIN–COMPUTER INTERFACE WITH QUICK-RESPONSE TACTILE FEEDBACK. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2018;73(4):269-276. (In Russ.)