A STUDY ON ALLOMETRY OF WING SHAPE AND VENATION IN INSECTS. PART 2. DIPTERA
Abstract
The research studied how body size affects wing shape and arrangement of veins in a wide range of families of dipteran insects (Diptera). Body mass and thorax length were used as criteria reflecting body size. Wing shape was characterized by aspect ratio and position of geometric center relative to its longitudinal axis. Allometry of venation was studied by geometric morphometric methods. It was found that character of dependence of wing shape on body size among Brachycera and Nematocera is different. Aspect ratio increases with body size in Nematocera, in Brachycera any correlation is absent. Shift of geometric center of a wing towards its base at the increase in body size is observed for Brachycera, for Nematocera no correlation is noted. It was shown that allometric component of the variation in arrangement of veins varies significantly between different families. With increase in body size, for most Brachycera-Cyclorrhapha studied (Calliphoridae, Muscidae, Sarcophagidae, Sepsidae, Tachinidae) the shift of r-m vein in basal direction and dm-cu vein in apical direction are noted. In Brachycera-Orthorrhapha suborder (Asilidae, Dolichopodidae, Empididae, Rhagionidae, Tabanidae), the point of intersection of veins R2+3 and C shifts towards the apex. For representatives of Nematocera (Chironomidae, Limoniidae, Tipulidae), shifts of the point of intersection of veins CuA2 and C in basal direction and r-m vein in apical direction are characteristic. The obtained data confirms significant effect of body size on wing shape in Diptera. However, the character of allometry is not uniform in different suborders, apparently due to the fact that values of flight parameters (wing frequency, stroke amplitude), relative wing size (wing area to body size ratio) and wing venation vary greatly in dipterans. It can be concluded that body size is not the principal factor affecting wing shape within the order Diptera.
About the Authors
О. A. BelyaevРоссия
Department of Entomology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
S. Е. Farisenkov
Россия
Department of Entomology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
References
1. Панов Е.Н. Половой отбор: теория или миф? Полевая зоология против кабинетного знания. М.: Т-во научн. изд. КМК, 2014. 412 с.
2. Расницын А.П. Происхождение и эволюция низших перепончатокрылых // Тр. Палеонтол. ин-та АН CCCР. Т. 123. М.: Наука, 1969. 196 с.
3. Danforth B.N. The evolution of hymenopteran wings: the importance of size // J. Zool. 1989. Vol. 218. N 2. P. 247–276.
4. Dujardin J.P., Le Pont F., Baylac M. Geographical versus interspecific differentiation of sand flies: a landmark data analysis // Bull. Entomol. Res. 2003. Vol. 93. N 1. P. 87–90.
5. Gidaszewski N.A., Baylac M., Klingenberg C.P. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup // BMC Evol. Biol. 2009. Vol. 9. Art. 110.
6. Kцlliker-Ott U.M., Blows M.W., Hoffmann A.A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? // Oikos. 2003. Vol. 100. N 3. P. 563–573.
7. Расницын А.П. Происхождение и эволюция перепончатокрылых насекомых // Тр. Палеонтол. ин-та АН CCCР. Т. 174. М.: Наука, 1980. 192 с.
8. Pretorius E. Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera – a case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae) // Aust. J. Entomol. 2005. Vol. 44. N 2. P. 113–121.
9. Serrano-Meneses M.A., Cуrdoba-Aguilar A., Azpilicueta-Amorнn M., González-Soriano E., Szйkely T. Sexual selection, sexual size dimorphism and Rench’s rule in Odonata // J. Evol. Biol. 2008. Vol. 21. N 5. P. 1259–1273.
10. Chursina M.A., Negrobov O.P. Phylogenetic Signal in the Wing Shape in the Subfamily Dolichopodinae (Diptera, Dolichopodidae) // Entomol. Rev. 2018. Vol. 98. N 5. P. 515–527.
11. Glantz S.A. Primer of Biostatistics. 4th Edition. N.Y.: McGraw-Hill, 1997. 473 pp.
12. Warton D.I., Duursma R.A., Falster D.S., Taskinen S. smatr 3 – an R package forestimation and inference about allometric lines // Methods Ecol. Evol. 2012. Vol. 3. N 2. P. 257–259.
13. Manual of Nearctic Diptera. Vol. 1. // Monograph. Research Branch, Agriculture Canada. N 27 / Eds. J.F. McAlpine, B.V. Peterson, G.E. Shewell, H.J. Teskey, J.R. Vockeroth, and D.M. Wood. Ottawa: Canada Communication Group Pub., 1981. 674 pp.
14. Manual of Nearctic Diptera. Vol. 2. // Monograph. Research Branch, Agriculture Canada. N 28 / Eds. J.F. McAlpine, B.V. Peterson, G.E. Shewell, H.J. Teskey, J.R. Vockeroth, and D.M. Wood. Ottawa: Canada Communication Group Pub., 1987. P. 675–1332.
15. Павлинов И.Я., Микешина Н.Г. Принципы и методы геометрической морфометрии // Ж. общ. биол. 2002. Т. 63. № 6. С. 473–493.
16. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric morphometrics for biologists: A primer. N.Y.: Elsevier Academic Press, 2004. 443 pp.
17. tpsDig2. Morphometrics at SUNY Stony Brook [Электронный ресурс]. 2013. Дата обновления: 20.02.2018. URL: http://life.bio.sunysb.edu/morph (дата обращения: 18.08.2018).
18. tpsUtil. Morphometrics at SUNY Stony Brook [Электронный ресурс]. 2015. Дата обновления: 20.02.2018. URL: http://life.bio.sunysb.edu/morph (дата обращения: 18.08.2018).
19. Arnqvist G., Martensson T. Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape // Acta Zool. Acad. Sci. Hung. 1998. Vol. 44. N 1–2. P. 73–96.
20. Klingenberg C.P. MorphoJ: an integrated software package for geometric morphometrics // Mol. Ecol. Resour. 2011. Vol. 11. N 2. P. 353– 357.
21. Drake А.G., Klingenberg С.P. The pace of morphological change: historical transformation of skull shape in St. Bernard dogs // Proc. R. Soc. Lond. B Biol. Sci. 2008. Vol. 275. N 1630. P. 71–76.
22. Walker J.A. Functional morphology and virtual models: physical constraints on the design of oscillating wings, fins, legs, and feet at intermediate Reynolds numbers // Integr. Comp. Biol. 2002. Vol. 42. N 2. P. 232–242.
23. Фарисенков С.Э., Беляев О.А., Чуканов В.С. Влияние размеров тела на летные характеристики стебельчатобрюхих перепончатокрылых (Hymenoptera, Apocrita) // Межд. науч.-иссл. журн. 2015. № 10 (41). Ч. 3. С. 117–121.
24. Harbig R.R., Sheridan J., Thompson M.C. Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms // J. Fluid Mech. 2013. Vol. 717. P. 166–192.
25. Belyaev O.A., Chukanov V.S., Farisenkov S.E. Comparative description of the wing apparatus and flight of some flies (Diptera, Brachycera) // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 3–4. P. 23–27.
26. Osborne F.M.F. Aerodynamics of flapping flight with application to insects // J. Exp. Biol. 1951. Vol. 28. P. 221–245.
27. Бродский А.К. Механика полета насекомых и эволюция их крылового аппарата. Л.: Изд-во ЛГУ, 1988. 208 с.
Review
For citations:
Belyaev О.A., Farisenkov S.Е. A STUDY ON ALLOMETRY OF WING SHAPE AND VENATION IN INSECTS. PART 2. DIPTERA. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(1):10-18. (In Russ.)
JATS XML

























