ODONATA AND THE ANTHROPOGENIC SALINIZATION OF INLAND WATERS
Abstract
Anthropogenic salinization of inland waters and its effect on freshwater biota is one of the current environmental problems. Such salinization leads to changes in the natural environment, undesirable from the point of view of environmental protection and not indifferent to humans. One of the three most important factors of anthropogenic salinization of freshwater in countries with a temperate and cold climate, along with agricultural activities and mining, has today become the widespread use of chemical reagents in the fight against road icing. Today, the main components of these reagents are chlorides of Na and Ca – cheap and easy to obtain natural materials. The mixture of sand and salt used in the practice of de-icing is usually stored in bulk in special open-air areas all year round. The impact of atmospheric precipitation makes its a source of salinization of the surrounding soils and waters. In 2015, 2016 and 2018 recorded salinity of inland waters near the long-term open storage of anti-icing agents in the Kaluga region. The anthropogenic nature of salinization of the examined reservoirs has been established. The main components of salinization of reservoirs in the study area are Na and Ca chlorides. The maximum level of salinity in the studied conditions is 4‰ (ppm), the degree of salinity depends on the distance of the reservoir from the salt storage. The influence of anthropogenic salinity on dragonflies, mainly of the species Coenagrion puella L., has been studied. It has been found that the negative effect of salt manifests itself only as a slowdown in the development of individuals with a high level of fluctuating asymmetry, the number of which in the population is not determined by water salinity. High salinity of water only leads to a change in the time of emergence of imago of sabjects with high FA. It is assumed that dragonflies, as one of the mass objects of freshwater biota, obviously do not suffer significantly with anthropogenic salinization.
About the Author
G. I. RyazanovaRussian Federation
Department of Entomology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
References
1. Kefford B.J., Buchwalter D., CañedoArgüelles M., Davis J., Duncan R.P., Hoffmann A., Thompson R. Salinized degraded systems or new habitats for salt-tolerant faunas? // Biol. Lett. 2016. Vol. 12. N 3. Article ID: 20151072.
2. Cañedo-Argüelles M., Kefford B.J., Piscart C., Prat N., Schäfer R.B., Schulz C.J. Salinisation of rivers: an urgent ecological issue // Environ. Pollut. 2013. Vol. 173. P. 157–167.
3. Blasius, B.J., Merritt R.W. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertibrate communities // Environ. Pollut. 2002. Vol. 120. N 2. P. 219– 231.
4. Hart B., Bailey P., Edwards P., Hortle K., James K., McMahon A., Meredith C., Swadling K. A review of salt sensitivity of Australian freshwater biota // Hydrobiologia. 1991. Vol. 210. N 1–2. P. 105–144.
5. Stranko S., Bourquin R., Zimmerman J., Kashiwagi M. McGinty M. Klauda R. Do road salts cause environmental impacts? Annapolis: Maryland Department of Natural Resources, 2013. 33 pp.
6. Williams D.D., Williams N.E., Cao Y. Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact // Water Res. 2000. Vol. 34. N 1. P. 127–138.
7. Corbet P.S. Dragonflies. Behavior and ecology of Odonata. Ithaca, New-York: Comstok Publ. Assoc., Cornell Univ. Press. 2004. 829 pp.
8. Rutherford J.C., Kefford B.J. Effects of salinity on stream ecosystems: improving models for macroinvertebrates. CSIRO Land and Water Technical Report 22/05. Canberra, 2005. 64 pp.
9. Millán A., Velasco J., Gutiérrez-Cánovas C., Arribas P., Picazo F., Sánchez-Fernández D. Abellán P. Mediterranean saline streams in southeast Spain: What do we know? // J. Arid. Environ. 2011. Vol. 75. N 12. P. 1352–1359.
10. Zinchenko T.D., Golovatyuk L.V. Salinity tolerance of macroinvertebrates in stream waters (review) // Arid Ecosyst. 2013. Vol. 3. N 3. P. 113–121.
11. Catlin P.M. Dragonflies (Odonata) emerging from brackish pools in saltmarshes of Gaspé, Quebec // Can. Field-Nat. 2009. Vol. 123. N 2. Р. 176–177.
12. Hart E.A., Lovvorn J.R. Patterns of macroinvertebrate abundance in inland saline wetlands: a trophic analysis // Hydrobiologia. 2005. Vol. 541. N 1. P. 45–54.
13. Kefford B.J., Zalizniak L., Nugegoda D. Growth of the damselfly Ischnura heterosticta is better in saline water than freshwater // Environ. Pollut. 2006. Vol. 141. N 3. P. 409–419.
14. Herbst D.B., Medhurst R.B., Roberts. S.W., Jellison R. Substratum associations аnd depth distribution of benthic invertebrates in saline Walker Lake, Nevada, USA // Hydrobiologia. 2013. Vol. 700. N 1. P. 61–72.
15. Conrad K.F., Willson K.H., Whitfield K.,.Harvey I.F, Thomas C.J., Thomas N. Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, sex, size, morph and ectoparasitism // Ecography. 2002. Vol. 25. N 4. P. 439–445.
16. Watts P.C., Rouquette J.R., Saccheri I.J., Kemp S.J., Thompson D.J. Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercurial // Molecular Ecology. 2004. Vol. 13. N 10. P. 2931–2945.
17. Watts P.C., Saccheri I.J., Kemp S.J., Thompson D.J. Effective population sizes and migration rates in fragmented populations of an endangered insect (Coenagrion mercurial: Odonata) // J. Animal Ecol. 2007. Vol. 76. N 4. P. 790–800.
18. Yablokov A.V., Eatin V.J., Pritikina L.N. Variability of wing venation of the dragonfly // Beitr. Ent. 1970. Vol. 5. N 6. P. 503–526.
19. Захаров В.М., Баранов А.С., Борисов В.И., Валецкий А.В., Кряжева Н.Г., Чистякова Е.К., Ф.Т. Чубинишвили. Здоровье среды: методика оценки. М.: Центр экологической политики России, 2000. 68 с.
20. Bonada N., Prat N., Resh V.H., Statzner B. Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches // Annu. Rev. Entomol. 2006. Vol. 51. P. 495–523.
21. Beasley D.A.E., Bonisoli-Alquati A., Mousseau T.A. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis // Ecol. Indic. 2013. Vol. 30. P. 218–226.
22. Ryazanova G.I., Polygalov A.S. Fluctuating asymmetry of wing venation in damselflies Ischnura elegans (V.d. Linden) (Odonata, Coenagrionidae) and prospects of its use as a biological indicator of ecological quality of freshwater reservoirs // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 4. P.165–169.
23. Piscart C., Moreteau J-C., Beisel J-N. Decrease of fluctuating asymmetry among larval instars in aquatic, holometabolous insect // C.R. Biol. 2005. Vol. 328. N 10–11. Р. 912–917.
24. Hardersen S., Wratten S.D., Frampton C.M. Does carbaryl increase fuctuating asymmetry in damselflies under field conditions? A mesocosm experiment with Xanthocnemis zealandica (Odonata:Zygoptera) // J. Appl. Ecol. 1999. Vol. 36. N 4. P. 534–543.
25. Piscart C., Moreteau J.-C., Beisel J.-N. Fluctuating asymmetry of natural populations of aquatic insects along a salinity gradient // Environmental Вioindicators. 2006. Vol. 1. N 4. P. 229–241.
Review
For citations:
Ryazanova G.I. ODONATA AND THE ANTHROPOGENIC SALINIZATION OF INLAND WATERS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(1):42-49. (In Russ.)