Competitive strategy of the subalpine tallgrass species of Northwest Caucasus
Abstract
We aimed to research the spectrum of the CSR strategies for subalpine tallgrass communities of the Northwest Caucasus (Teberda state natural biosphere reserve). The community is typical of the subalpine zone in the altitude range of 1850 to 2600 m (mean 2300 m). It occupies the lower portions of slopes, valley bottoms and depressions on slopes with significant winter snowpack accumulation. Stable water supply from the upper part of slopes is an important factor increasing its productivity. A few tall and highly productive species have established at such sites, since grazing was stopped. The community dominants are Rumex alpinus, Senecio platyphylloides, Cephalaria gigantea, Ligusticum alatum and other. Accomplish this we measured key functional traits of the leaves: leaf area, wet leaf mass, dry leaf mass. On the basis of these traits we calculated CSR-strategies for the 42 species of the tallgrass communities. We defined six types of CSR-strategies and confirmed that most of explored species has strongly pronounced traits of the competitive (C) and competitive-ruderal (CR) strategies. For the 11 species C-strategy was identified (for example, Angelica purpurascens, A. tatianae, Cirsium chlorocomos, Heracleum asperum, H. leskovii, H. sosnowskyi). The degree of C-selection has positive correlation with mean height of the species. CR-strategy was shown for the Aconitum nasutum, Cirsium simplex, Geranium sylvaticum, Hesperis voronovii, Rumex alpestris and other. Two species (Achillea millefolium, Dactylis glomerata) have competitive-stress-tolerant strategy (CS). Stress- tolerant (S) strategy has been identified for the three species Veronica filiformis, Lilium monadelphum, Millium effusum. Two species have CSR-strategy (Trifolium pratense, Astrantia maxima). Also, 70% species have the ruderal strategy features (on average, 26%). We assume it is result of the anthropogenic influence for many centuries. Our results contradict the popular point of view that highland species have stress-tolerant strategy. This can be explained by the ecological conditions in the lower portions of slopes, valley bottoms and depressions on slopes. In this conditions competitive species are most adaptive. Our hypotheses was supported; constant Caucasus species of the subalpine grass communities have significantly racteristics of competitive strategies (up to 95%) (except V. filiformis).
About the Authors
K. V. DudovaRussian Federation
Department of Geobotany, Biology Faculty
Leninskiye gory 1–12, Moscow, 119234
T. M. Dzhatdoeva
Russian Federation
Svobody str. 62А, Cherkessk, 369000
S. V. Dudov
Russian Federation
Department of Geobotany, Biology Faculty
Leninskiye gory 1–12, Moscow, 119234
A. A. Akhmetzhanova
Russian Federation
Department of Geobotany, Biology Faculty
Leninskiye gory 1–12, Moscow, 119234
D. K. Tekeev
Russian Federation
Badukskij per. 1, Teberda, 369210
V. G. Onipchenko
Russian Federation
Department of Geobotany, Biology Faculty
Leninskiye gory 1–12, Moscow, 119234
References
1. Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin: Springer, 2003. 345 pp.
2. Grime J.P. Plant strategies, vegetation processes, and ecosystem properties. Chichester: John Wiley & Sons, 2001. 176 pp.
3. Caccianiga M., Luzzaro A., Pierce S., Ceriani R.M., Cerabolini B. The functional basis of a primary succession resolved by CSR classification // Oikos. 2006. Vol. 112. N 1. P. 10–20.
4. Huseyinoglu R., Yalcin E. Competitive, stress-tolerant and ruderal based classification of some plant species in an Alpine community of the Giresun Mountains in Turkey // J. Env. Biol. 2017. Vol. 38. N. 5. P. 761–769.
5. Barba-Escoto L., Ponce-Mendoza A., García- Romero A., Calvillo-Medina R.P. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico // J. Veg. Sci. 2019. Vol. 30. N 2. P. 375–385.
6. Petriccione B., Bricca A. Thirty years of ecological research at the Gran Sasso d’Italia LTER site: climate change in action // Nat. Conserv. 2019. Vol. 34. N 1. P. 9–39.
7. Pierce S., Negreiros D., Cerabolini B.E., et al. A global method for calculating plant CSR ecological strategies applied across biomes world- wide // Funct. Ecol. 2017. Vol. 31. N 2. P. 444–457
8. Onipchenko V.G. Alpine vegetation of the Teberda Reserve, the Northwestern Caucasus. Zurich: Geobotanisches Institut ETH, 2002. 130 pp.
9. Anten N.P.R., Hirose T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow // J. Ecol. 1999. Vol. 87. N 4. P. 583–597.
10. Michl T., Dengler J., Huck S. Montane- subalpine tall-herb vegetation (Mulgedio-Aconitetea) in central Europe: Large-scale synthesis and comparison with northern Europe // Phytocoenologia. 2010. Vol. 40. N 2–3. P. 117–154.
11. Pickering C.M., Growcock A.J. Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps // Environ. Manage. 2009. Vol. 91. N 2. P. 532– 540.
12. Rehder H. Nitrogen relations of ruderal communities (Rumicion alpini) in the Northern Calcareous Alps // Oecologia. 1982. Vol. 55. N 1. P. 120–129.
13. Grime J.P. Vegetation classification by reference to strategies // Nature. 1974. Vol. 250. N 5461. P. 26–31.
14. Grime J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory // Am. Nat. 1977. Vol. 111. N 982. P. 1169–1194.
15. Grime J.P. The CSR model of primary plant strategies—origins, implications and tests // Plant evolutionary biology. Dordrecht: Springer, 1988. P. 371–393.
16. Pérez-Harguindeguy N., Díaz S., Garnier E., et al. New handbook for standardised measurement of plant functional traits worldwide // Aust. J. Bot. 2013. Vol. 61 N 3. P. 167–234.
17. Garnier E., Navas M.-L., Grigulis K. Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford Univ. Press, 2016. 231 pp.
18. Cerabolini B.E., Brusa G., Ceriani R.M., De Andreis R., Luzzaro A., Pierce S. Can CSR classification be generally applied outside Britain? // Plant Ecol. 2010. Vol. 210. N 2. P. 253–261.
19. Pierce S., Brusa G., Vagge I., Cerabolini B.E. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants // Funct. Ecol. 2013. Vol. 27. N 4. P. 1002–1010.
20. Cornelissen J.H.C., Lavorel S., Garnier E., Díaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide // Aust. J. Bot. 2003. Vol. 51. N 4. P. 335–380.
21. Онипченко В.Г., Зернов А.С., Воробьева Ф.М. Сосудистые растения Тебердинского заповедника (аннотированный список видов) / Под ред. И.А. Губанова. М.: Макс Пресс, 2011. 144 с.
22. Tappeiner U., Cernusca A. Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the Central Caucasus // Plant, Cell Environ. 1996. Vol. 19. N 4. P. 403–417.
23. Silva J.L.A., Souza A.F., Caliman A., Voigt E.L., Lichston J.E. Weak whole-plant trait coordination in a seasonally dry South American stressful environment // Ecol. Evol. 2018. Vol. 8. N 1. P. 4–12.
24. Wang J., Zhang C., Yang H., Mou C., Mo L., Luo P. Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau // Land. Degrad. Dev. 2018. Vol. 29. N 9. P. 2920–2931.
25. Vittoz P., Randin C., Dutoit A., Bonnet F., Hegg O. Low impact of climate change on subalpine grasslands in the Swiss Northern Alps // Glob. Chang. Biol. 2009. Vol. 15. N 1. P. 209–220.
26. Cerabolini B., Pierce S., Luzzaro A., Ossola A. Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species // Plant Ecol. 2010. Vol. 207. N 2. P. 333–345.
Review
For citations:
Dudova K.V., Dzhatdoeva T.M., Dudov S.V., Akhmetzhanova A.A., Tekeev D.K., Onipchenko V.G. Competitive strategy of the subalpine tallgrass species of Northwest Caucasus. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(3):179-187. (In Russ.)