Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

PARP1 binding to DNA breaks and hairpins alters nucleosome structure

Abstract

DP-ribose)polymerase 1 (PARP1) is involved in the processes of DNA repair, replication, transcription, cell cycle regulation and apoptosis. Participation of PARP 1 in DNA repair is determined by the ability of the enzyme to interact with various defects and non-canonical structures of DNA with consequent polyADP- ribosylation of neighboring proteins. Earlier for mononucleosomes containing  a DNA end recapitulating double-strand DNA break near the nucleosome, we found that PARP1 induces nucleosome structural changes in the absence of NAD+. In the present work we report that PARP1 induces similar structural changes in nucleosomes containing either DNA ends extending from the core by 20 b.p. or containing hairpins at the DNA ends. In all the cases PARP1 caused changes in DNA wrapping on the surface of the histone octamer that are accompanied by an increase in the distance between adjacent DNA gyres. These PARP1-mediated changes in the nucleosome structure presumably contribute to  chromatin decondensation and facilitate access of repair enzymes to damaged DNA.

About the Authors

N. V. Malyuchenko
Lomonosov Moscow State University
Russian Federation

Bioengineering Department, Biological Faculty, 

Leninskie Gory 1–12, Moscow, 119234



E. Yu. Kotova
Cancer Epigenetics Team, Fox Chase Cancer Center
United States
Cottman Avenue 333, Philadelphia, PA 19111


M. P. Kirpichnikov
Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation
Leninskie Gory 1–12, Moscow, 119234; ul. Miklukho-Maklaya 16/10, 117997, Moscow


V. M. Studitsky
Lomonosov Moscow State University; Cancer Epigenetics Team, Fox Chase Cancer Center
United States
Leninskie Gory 1–12, Moscow, 119234; Cottman Avenue 333, Philadelphia, PA 19111


A. V. Feofanov
Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation
Leninskie Gory 1–12, Moscow, 119234; ul. Miklukho-Maklaya 16/10, 117997, Moscow


References

1. Ludwig A., Behnke B., Holtlund J., Hilz H. Immunoquantitation and size determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes // J. Biol. Chem. 1988. Vol. 263. N 15. P. 6993–6999.

2. Ame J.C., Spenlehauer C., de Murcia G. The PARP superfamily // BioEssays. 2004. Vol. 26. N 8. P. 882–893

3. Langelier M.F., Planck J.L., Roy S., Pascal Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 // Science. 2012. Vol. 336. N 6082. P. 728–732.

4. Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification // Curr. Opin. Struct. Biol. 2018. Vol. 53. P. 187–198.

5. Pion E., Ullmann G.M., Amé J.C., Gérard D., de Murcia G., Bombarda E. DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation // Biochemistry. 2005. Vol. 44. N 44. P. 14670–14681.

6. Pascal J.M. The comings and goings of PARP-1 in response to DNA damage // DNA Repair (Amst.). 2018. Vol. 71. P. 177–182.

7. Haince J.F., McDonald D., Rodrigue A., Dery U., Masson J.Y., Hendzel M.J., Poirier G.G. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites // J. Biol. Chem. 2008. Vol. 283. N 2. P. 1197–1208.

8. Liu C., Vyas A., Kassab M.A., Singh A.K., Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response // Nucleic Acids Res. 2017. Vol. 45. N 14. P. 8129–8141.

9. Sultanov D.C., Gerasimova N.S., Kudryashova K.S., Maluchenko N.V., Kotova E.Y., Langelier M.F., Pascal J.M., Kirpichnikov M.P., Feofanov A.V., Studitsky V.M. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy // AIMS Genet. 2017. Vol. 4. N 1. P. 21–31.

10. Liu Z., Kraus K.W. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci // Mol Cell. 2017. Vol. 65. N 4. P. 589–603.

11. Valieva M.E., Armeev G.A., Kudryashova K.S., Gerasimova N.S., Shaytan A.K., Kulaeva O.I., McCullough L.L., Formosa T., Georgiev P.G., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Large-scale ATP-independent nucleosome unfolding by a histone chaperone // Nat. Struct. Mol. Biol. 2016. Vol. 23. N 12. P. 1111–1116.

12. Valieva M.E., Gerasimova N.S., Kudryashova K.S., Kozlova, A.L., Kirpichnikov M.P., Hu Q., Botuyan M.V., Mer G., Feofanov A.V., Studitsky V.M. Stabilization of nucleosomes by histone tails and by FACT revealed by spFRET microscopy // Cancers. 2017. Vol. 9. N 1: 3.

13. Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Chromatin Protocols, vol. 523. Methods Mol. Biol. / Eds. S. Chellappan. N.Y.: Humana Press, 2009. P. 109–123.

14. Langelier M.F., Steffen J., Riccio A.A., McCauley M., Pascal J.M. Purification of DNA damage-dependent PARPs from E. coli for structural and biochemical analysis // Poly(ADP- ribose) polymerase, vol. 1608. Methods Mol. Biol. / Eds. A. Tulin. N.Y.: Humana Press, 2017. P. 431– 444.

15. Kudryashova K.S., Nikitin D.V., Chertkov O.V., Gerasimova N.S., Valeva M.E., Studitsky V.M., Feofanov A.V. Development of fluorescently labeled mononucleosomes for the investigation of transcription mechanisms by single complex microscopy // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 189–193.

16. Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Chromatin Protocols, vol 1288. Methods Mol. Biol. / Eds. S. Chellappan. N.Y.: Humana Press, 2015. P. 395–412.

17. Polach K.J., Widom J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation // J. Mol. Biol. 1995. Vol. 254. N 2. P. 130–149.

18. Clark N.J., Kramer M., Muthurajan U.M., Luger K. Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes // J. Biol. Chem. 2012. Vol. 287. N 39. P. 32430–32439.

19. Potaman V.N., Shlyakhtenko L.S., Oussatcheva E.A., Lyubchenko Y.L., Soldatenkov V.A. Specific binding of poly(ADP-ribose) polymerase-1 to cruciform hairpins // J. Mol. Biol. 2005. Vol. 348. N 3. P. 609–661.

20. Muthurajan U.M., Hepler M.R., Hieb A.R., Clark N.J., Kramer M., Yao T., Luger K. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone // Proc. Natl. Acad. Sci. U.S.A. 2014. Vol. 111. N 35. P. 12752–12757.


Review

For citations:


Malyuchenko N.V., Kotova E.Yu., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. PARP1 binding to DNA breaks and hairpins alters nucleosome structure. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(3):200-206. (In Russ.)

Views: 351


ISSN 0137-0952 (Print)