Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

α1-Adrenoreceptors’ activation effects in the interatrial septum myocardium in newborn and adult rats

Abstract

The bioelectric properties of various forming parts of the heart undergo significant changes during pre- and postnatal ontogenesis. Nevertheless, the early stages of embryogenesis determine not only the general scheme of the structure of the heart, but also the features of bioelectric activity in various parts of the mature heart. In particular, the presence of a myocardium with is similar to pacemaker was shown by histological methods in the interatrial septum (AS) of the mammalian heart. However, the electrical activity in this structure remains unexplored. The purpose of this work was to study the ability of AS to generate spontaneous action potentials (AP), as well as to study the effects of adrenergic effects on the bioelectric activity of heart AS. For this, the resting potential and AP were recorded using standard microelectrode techniques in multicellular perfused isolated AS and left atrium preparations obtained from the rat heart at the end of the first day of postnatal development, as well as on the 60th day of life. In our work, α1-adrenomimetic phenylephrine (PE affected the configuration of AP in both AS and atrial tissue obtained from animals of both age groups. In addition, in dormant preparations, PE caused spontaneous activity in AS, but not in atrium, which may be due to fluctuations in the level of cytoplasmic calcium. With the application of a blocker current, activated by hyperpolarization (If), ZD7288 against the background of PE, showed us a decrease in the rate of slow diastolic depolarization of AP in AS - pacemaker cells, a decrease in frequency and the appearance of burst activity, up to complete suppression of AP generation. Thus, the myocardium of the AS in newborn rats generates spontaneous electrical activity in the absence of adrenergic stimulation, which in adult rats is a necessary condition for the appearance of the AS-pacemaker activity. The ability for spontaneous activity is highly – likely to be associated with the presence of pacemaker current If in cardiomyocytes of AS.

About the Authors

K. B. Pustovit
Lomonosov Moscow State University; Pirogov Russian National Research Medical University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology; Department of Physiology

Leninskye gory 1–12, Moscow, 119234; Ostrovitianov str. 1, Moscow, 117997



E. A. Malolina
Koltzov Institute of Developmental Biology, Russian Academy of Sciences
Russian Federation

Laboratory of Evolutionary Biology of Development

Vavilova str. 26, Moscow, 119334



References

1. Moorman A.F.M., Christoffels V.M. Cardiac chamber formation: development, genes, and evolution // Int. J. Cardiol. 2003. Vol. 83. N 4. P. 1223–1267.

2. Yanni J., Tellez J.O., Sutyagin P.V., Boyett M.R., Dobrzynski H.J. Structural remodelling of the sinoatrial node in obese old rats // J. Mol. Cell. Cardiol. 2010. Vol. 48. N 4. P. 653–662.

3. Kelly R.G., Buckingham M.E. The anterior heart-forming field: voyage to the arterial pole of the heart // Trends Genet. 2002. Vol. 18. N 4. P. 210–216.

4. Davis J.S., Hassanzadeh S., Winitsky S., Lin H., Satorius C., Vemuri R., Aletras A.H., Wen H., Epstein N.D. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation // Cell. 2001. Vol. 107. N 5. P. 631–641.

5. Rentschler S., Vaidya D.M., Tamaddon H., Degenhardt K., Sassoon D., Morley G.E., Jalife J., Fishman G.I. Visualization and functional characterization of the developing murine cardiac conduction system // Development. 2001. Vol. 128. N 10. P. 1785–1792.

6. Højgaard M.V., Holstein-Rathlou N.H., Agner E., Kanters J.K. Reproducibility of heart rate variability, blood pressure variability and baroreceptor sensitivity during rest and head-up tilt // Blood Press. Monit. 2005. Vol. 10. N 1. P. 19–24.

7. Moorman A.F.M., Jong F.De., Denyn M.M., Lamers W.H. Development of the cardiac conduction system // Circ. Res. 1998. Vol. 82. N 6. P. 629–644.

8. Moorman A.F.M., Anderson R.H. Development of the pulmonary vein // Int. J. Cardiol. 2011. Vol. 147. N 1. P. 182.

9. Pustovit K.B., Kuzmin V.S., Abramochkin D.V. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors // Naunyn Schmiedebergs Arch. Pharmacol. 2016. Vol. 389. N 3. P. 303–313.

10. Pustovit K.B., Potekhina V.M., Ivanova A.D., Petrov A.M., Abramochkin D.V., Kuzmin V.S. Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner // Pur. Sign. 2019. Vol. 15. N 1. P. 107–111.

11. Hoffman B.F., Cranefield P.F. Electrophysiology of the heart. N.Y.: McGraw-Hill, 1960. 390 pp.

12. O’Connell T.D.O., Jensen B.C., Baker A.J., Simpson P.C. Cardiac alpha 1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance // Pharmacol. Rev. 2014. Vol. 66. N 1. P. 308–333.

13. Egorov Y.V., Kuzmin V.S., Glukhov A.V., Rosenshtraukh L.V. Electrophysiological characteristics, rhythm, disturbances and conduction discontinuities under autonomic stimulation in the rat pulmonary vein myocardium // J. Cardiovasc. Electrophysiol. 2015. Vol. 26. N 10. P. 1130–1139.

14. Xiao R.-P., Zhu W., Zheng M., Cao C., Zhang Y., Lakatta E.G., Han Q. Subtype-specific α1- and β-adrenoceptor signaling in the heart // Trends Pharmacol. Sci. 2006. Vol. 27. N 6. P. 330–337.

15. Reimann F., Ashcroft F.M. Inwardly rectifying potassium channels // Curr. Opin. Cell Biol. 1999. Vol. 11. N 4. P. 503–508.

16. Anumonwo J.M.B., Lopatin A.N. Cardiac strong inward rectifier potassium channels // J. Mol. Cell. Cardiol. 2010. Vol. 48. N 1. P. 45–54.

17. Oliva C., Cohen I.S., Pennefather P. The mechanism of rectification of iK1 in canine Purkinje myocytes // J. Gen. Physiol. 1990. Vol. 96. N 2. P. 299–318.

18. Ibarra J., Morley G.E., Delmar M. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes // Biophys. J. 1991. Vol. 60. N 6. P. 1534–1539.

19. Zhong M., Rees, C.M., Terentyev D., Choi B., Koren G., Karma A. NCX-mediated subcellular ca2d dynamics underlying early afterdepolarizations in lqt2 cardiomyocytes // J Biophys. 2018. Vol. 115. N 6. P. 1019–1032.

20. Kapoor N., Tran A., Kang J., Zhang R., Philipson K.D., Goldhaber J. Regulation of calcium clock-mediated pacemaking by inositol-1,4,5trisphosphate receptors in mouse sinoatrial nodal cells // J. Physiol. 2015. Vol. 593. N 12. P. 2649–2663.

21. Giladi M., Tal I., Khananshvili D. Structural features of ion transport and allosteric regulation in sodium-calcium exchanger (NCX) proteins // Front. Physiol. 2016. Vol. 7: 30.

22. Roell W., Lewalter T., Sasse P., Tallini Y.N., Choi B.R., Breitbach M., Doran R., Becher U.M., Hwang S.M., Bostani T., Von Maltzahn J. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia // Nature. 2007. Vol. 450. N 7171. P. 819–824.


Review

For citations:


Pustovit K.B., Malolina E.A. α1-Adrenoreceptors’ activation effects in the interatrial septum myocardium in newborn and adult rats. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(3):215-221. (In Russ.)

Views: 261


ISSN 0137-0952 (Print)