The spatial distribution of plankton picocyanobacteria on the shelf of the Kara, Laptev, and East Siberian Seas
Abstract
The spatial distribution of picocyanobacteria on the arctic longitude transect passing through the shelf of the Kara, Laptev and East Siberian seas from 58° to 168° E was studied. In the Kara Sea the picocyanobacteria abundance averaged 0.48±1.2 109 cell/m3, in the Laptev Sea — 0.16±0.24∙109 cell/m3, in the East Siberian Sea — 0.25±0.43∙109 cell/m3. The abundance fluctuations of photoautotrophic prokaryotes were determined by the presence of allochthones picocyanobacteria sources - river runoff and transformed North Atlantic waters. Highest abundances were observed in the areas of the runoff influence of the Siberian Rivers Ob, Khatanga, Indigirka and Kolyma and averaged 0.5∙109 cell/m3 (river Ob), 0.2∙109 cell/m3 (river Khatanga), 0.4∙109 cell/m3 (river Indigirka) и 1.6∙109 cell/m3 (river Kolyma). The average contribution of picocyanobacteria to the total abundance and biomass of picoforms in the western part of the Kara Sea was 37% and 36% respectively. In other areas, the average contribution of picocyanobacteria to the total abundance of photo trophic picoplankton did not exceed 7%, to the total biomass — 6%. A highly reliable (p<<0.01) positive correlation between the abundance and biomass of picocyanobacteria and the water temperature (p = 0.003) was revealed over the entire array of data obtained.
About the Authors
T. A. BelevichRussian Federation
Department of Hydrobiology, School of Biology.
Leninskiye gory 1—12, Moscow, 119234
L. V. Ilyash
Russian Federation
Department of Hydrobiology, School of Biology.
Leninskiye gory 1—12, Moscow, 119234
A. L. Tchultsova
Russian Federation
Northern Dvina Embankment, 112, Arkhangelsk, 163061
M. V. Flint
Russian Federation
Nahimovskiy pr., 36, Moscow, 117997
References
1. Moon-van der Staay S.Y., Wachter R., Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity // Nature. 2001. Vol. 409. N 6820. P. 607-610.
2. Li W.K.W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting // Limnol. Oceanogr. 1994. Vol. 39. N 1. P. 169-175.
3. Pedros-Alio C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean // Prog. Oceanogr. 2015. Vol. 139. P. 233-243.
4. Paulsen M.L., Dore H, Garczarek L., Seuthe L, Muller O, Sandaa R-A, Bratbak G., Larsen A. Synechococcus in the Atlantic gateway to the Arctic Ocean // Front. Mar. Sci. 2016. Vol. 3:191.
5. Waleron M, Waleron K, Vincent W.F., Wilmotte A. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean // FEMS Microbiol. Ecol. 2007. Vol. 59. N 2. P. 356-365.
6. Cottrell M.T., Kirchman D.L. Photoheterotrophic microbes in the arctic ocean in summer and winter // Appl. Environ. Microbiol. 2009. Vol. 75. N 15. P. 4958-4966.
7. IPCC: Climate Change 2013: The physical science basis, contribution of working group to the fifth assessment report of the intergovernmental panel on climate change / Eds. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge: Cambridge Univ. Press, 2013. 1535 pp.
8. Gordeev V.V. River input of water, sediment, major ions, nutrients and trace metals from Russian territory to the arctic ocean // The freshwater budget of the arctic ocean / Eds. E.L Lewis. Kluwer: Amsterdam, 2000. P. 297-322.
9. Polyakov I.V., Pnyushkov A.V, Alkire M.B. et al. Greater role for Atlantic inflows on sea ice loss in the Eurasian basin of the Arctic Ocean // Science. 2017. Vol. 356. N 6335. P. 285-291.
10. Blais M, Ardyna M, Gosselin M, Dumont D, Belanger S, Tremblay J-E, Gratton Y., Marchese C, Poulin. M. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean // Limnol. Oceanogr. 2017. Vol. 62. N 6. P. 2480-2497.
11. Vincent W.F. Microbial ecosystem responses to rapid climate change in the Arctic // ISME. 2010. N 4. P. 1087-1090.
12. Moreira-Turcq P.F., Cauwet G, Martin J.M. Contribution of flow cytometry to estimate picoplankton biomass in estuarine systems // Hydrobiologia. 2001. Vol. 462. N 1-3. P. 157-168.
13. Bauch D., Torres-Valdes S, Polyakov I., Novikhin A., Dmitrenko I., McKay J., Mix A.. Halocline water modification and along-slope advection at the Laptev Sea continental margin // Ocean Sci. 2014. Vol. 10. N 1. P. 141-154.
14. Zavialov P.O., Izhitskiy A.S., Osadchiev A.A., Pelevin V.V., Grabovskiy A.B. The structure of thermohaline and bio-optical fields in the upper layer of the Kara Sea in September 2011 // Oceanology. 2015. Vol. 55. N 4. P. 461-471.
15. Hansen H.P., Koroleff F. Determination of nutrients // Methods of seawater analysis / Eds. K. Grashoff, K. Kremling, M. Ehrhardt. Weinheim, N.Y., Chichester, Brisbane, Singapore, Toronto: Wiley-VCH, 1999. P. 149-228.
16. Belevich T.A., Ilyash L.V., Milyutina I.A., Logacheva M.D., Troitsky A.V. Phototrophic picoeukaryotes of Onega bay, the White Sea: abundance and species composition // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 3. P. 109-114.
17. Ribeiro C.G., Dominique M. D, dos Santos A.L., Brandini F. P, Vaulot. D. Estimating microbial populations by flow cytometry: comparison between instruments // Limnol. Oceanogr-Meth. 2016. Vol. 14. N. 11. P. 750-758.
18. Verity P.G., Robertson C.Y., Tronzo C.R., AndrewsM.G., Nelson J.R., Sieracki M.E. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton // Limnol. Oceanogr. 1992. Vol. 37. N 7. P. 1434-1446.
19. Menden-Deuer S, Lessard E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton // Limnol. Oceanogr. 2000. Vol. 45. N 3. P. 569-579.
20. Clarke K.R, Gorley R.N. PRIMER v6: User Manual/Tutorial. Plymouth: PRIMER-E, 2006. 192 pp.
21. Fahrbach E, Meincke J., 0sterhus S, Rohardt G, Schauer U, Tverberg, V, Verduin J. Direct measurements of volume transports through Fram Strait // Polar Res. 2001. Vol. 20. N 2. P. 217-224.
22. Cottrell M., Kirchman D. Virus genes in Arctic marine bacteria identified by metagenomic analysis // Aquat. Microb. Ecol. 2012. Vol. 66. N 2. P. 107-116.
23. Waterbury J.B., Watson S.W., Valois F.W., Franks D. G. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus // Photosynthetic Picoplankton / Eds T. Platt and W.K.W. Li. Ottawa: Can. Bull. Fish. Aquat. Sci., 1986. P. 71-120.
24. Lovejoy C., Vincent W.F., Bonilla S., Roy S., Martineau M.-J., Terrado R., Potvin M., Massana R., Pedro's-Alio' C. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas // J. Phycol. 2007. Vol. 43. N 1. P. 78-89.
25. Olson R.J., Zettler E.R., Armbrust E.V., Chisholm S.W. Pigment, size and distribution of Synechococcus in the North Atlantic and Pacific oceans // Limnol. Oceanogr. 1990. Vol. 35. N 1. P. 45-58.
Review
For citations:
Belevich T.A., Ilyash L.V., Tchultsova A.L., Flint M.V. The spatial distribution of plankton picocyanobacteria on the shelf of the Kara, Laptev, and East Siberian Seas. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(4):247-253. (In Russ.)