Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Effects of diazepam, piracetam and mexidol on passive avoidance response

Abstract

In experiments on rats, we compared the influence of anxiolytic diazepam and nootropics piracetam and mexidol on passive avoidance conditioning (PAC) in a three compartment apparatus that consisted of a light compartment, a dark dangerous compartment in which foot shock was delivered and a dark safe one where the rats were not punished. Electric foot shock during PAC caused a sharp increase in the latent period of the central compartment leaving during the testing in the control animals, but did not lead to the safe compartment choice. Based on these data on the differential impact of the foot shock on PAC, we formulated the assumption that learning processes, which determined the motor response delay and the safe compartment selection, had different associative nature. The increase in the latent period is associated with the classical fear conditioning regardless of the place of the current impact. The safe compartment choice, on the contrary, is associated with the memory trace formation about the location of the foot shock exposure. The use of pharmacological substances that affect fear and memory in different ways gave additional arguments in favor of the assumption of various associative processes that determined PAC. Reducing the level of fear with diazepam reduced the latent period of motor response relative to the control value, but did not affect the choice of a safe compartment. In contrast, the mnemotropic properties of piracetam and mexidol increased the preference for a safe compartment without increasing the latent period. These differential pharmacological effects confirm that PAC is based on the conditioned responses of fear, which causes an increase in latent period of leaving the central compartment, and on the memory of the electrical exposure location which provides the safe compartment choice.

About the Authors

A. N. Inozemtsev
Lomonosov Moscow State University
Russian Federation

Leninskiye gory 1—12, Moscow, 119234



D. S. Berezhnoy
Lomonosov Moscow State University; Scientific Center of Neurology
Russian Federation

Department of Higher Nervous Activity, School of Biology Lomonosov MSU; Laboratory of Clinical and Experimental Neurochemistry SCN.

Leninskiye gory 1—12, Moscow, 119234; Volokolamsk, Highway 80, Moscow, 125367



A. V. Novoseletskaya
Lomonosov Moscow State University
Russian Federation

Department of Higher Nervous Activity, School of Biology

Leninskiye gory 1—12, Moscow, 119234



References

1. Bures J, Buresova O, Huston J. P. Techniques and basic experiments for the study of brain and behavior. N.Y.: Elsevier, 1976. 290 pp.

2. Inozemtsev A.N. Analysis of the memory trace nature in passive avoidance response // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 2. P. 53-57.

3. Malik R, Sangwan A., Saihgal R, Jindal D.P., Piplani P. Towards better brain management: nootropics // Curr. Med. Chem. 2007. Vol. 14. N 2. P. 123-131.

4. Castanheira L, Ferreira M.F., Sebastiao A.M., Telles-Correia D. Anxiety assessment in pre-clinical tests and in clinical trials: a critical review // Curr. Top. Med. Chem. 2018. Vol. 18. N 19. P. 1656-1676.

5. Dubrovina N.I., Zinov’ev D.R. Contribution of GABA receptors to extinction of memory traces in normal conditions and in a depressionlike state // Neurosci. Behav. Physiol. 2008.Vol. 38. N 8. P. 775-779.

6. Pavlova I.V., Rysakova M.P. Effects of administration of an agonist and an antagonist of GABAA receptors into the basolateral nucleus of the amygdala on the expression and extinction of fear in rats with different freezing durations // Neurosci. Behav. Physiol. 2016. Vol. 46. N 2. P. 205-214.

7. Ehrlich I., Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A. Amygdala inhibitory circuits and the control of fear memory // Neuron. 2009. Vol. 62. N 6. Р. 757-771.

8. McEown K., Treit D. A2 GABAA receptor sub-units in the ventral hippocampus and a5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory // Neuroscience. 2013. N 252. Р. 169-177.

9. Smith K.S., Engin E, Meloni E.G., Rudolph U. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice // Neuropharmacology. 2012. Vol. 63. N 2. Р. 250-258.

10. Kim D.H., Kim J.M., Park S.J., Lee S, Shin C.Y., Cheong J.H., Ryu J.H. Hippocampal extracellular signal-regulated kinase signaling has a role in passive avoidance memory retrieval induced by GABAA receptor modulation in mice // Neuropsychopharmacology. 2012. Vol. 37. N 5. Р. 1234-1244.

11. Tsuji M, Takeda H, Matsumiya T. Modulation of passive avoidance in mice by the 5-HT1A receptor agonist flesinoxan: comparison with the benzodiazepine receptor agonist diazepam // Neuropsychopharmacology. 2003. Vol. 28. N 4. Р. 664-674.

12. Vasudevan M, Parle M. Pharmacological evidence for the potential of Daucus carota in the management of cognitive dysfunctions // Biol. Pharm. Bull. 2006. Vol. 29. N 6. Р. 1154-1161.

13. Кулаичев А.П. Методы и средства анализа данных в среде Windows/STADIA. М.: НПО «Информатика и компьютеры», 1999. 241 с.

14. Иноземцев А.Н., Бельник А.П., Островская Р.У Изучение условного рефлекса пассивного избегания в модифицированной трех камерной установке // Эксп. клин. фармакол. 2007. Т. 70. № 2. С. 67-69.

15. Inozemtsev A.N. Biological origins of protective mechanisms activated by the disruption of higher nervous activity // Moscow Univ. Biol. Sci. Bull. 2009. Vol. 64. N 2. P. 57-62.

16. Berezhnoy D.S., Bokieva S.B., Stvolinskii S. L., Fedorova T.N., Inozemtsev A.N. Effect of carnosine on conditioned passive avoidance response in the norm and under hypoxia conditions // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 3. P. 105-109.

17. Siegmund A., Wotjak C.T. A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear // J. Psychiatr. Res. 2007. Vol. 41. N 10. Р. 848-860.

18. Konorski J. Integrative activity of the brain: An interdisciplinary approach. Chicago; London: Univ. Chicago Press, 1967. 531 pp.

19. Toropova K.A., Anokhin K.V. Modeling of post-traumatic stress disorder in mice: nonlinear relationship with the strength of the traumatic event // Neurosci. Behav. Physiol. 2019. Vol. 49. N 7. P. 875-886.

20. Stuchli'k A., Petrasek T., Prokopova I., Holubova K., Hatalova H., Vales K., Kubi'k S., Dockery C., Wesierska M. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory // Physiol. Res. 2013. Vol. 62. N 1. Р. 1-19.

21. Иноземцев А.Н., Капица И.Г., Гарибова T. Л., Бокиева С.Б., Воронина Т.А. Сопоставление влияния ноотропов и анксиолитиков на функциональные нарушения реакции избегания // Вестн. Моск. ун-та. Сер. 16. Биология. 2004. № 3. С. 24-30.

22. Inozemtsev A.N., Agapitova A.E., Bokieva S.B., Glazova N.Yu, Levitskaya N.G., Kamenskii A.A., Myasoedov N.F. Differently directed influences of semax on the formation and functional impairments of an active avoidance reaction in rats // Neurosci. Behav. Physiol. 2015. Vol. 45. N 2. P. 173-178.

23. Simonov P.V. The emotional brain. physiology, neuroanatomy, psychology and emotion. N.Y.; London: Plenum Press, 1986. 267 pp.


Review

For citations:


Inozemtsev A.N., Berezhnoy D.S., Novoseletskaya A.V. Effects of diazepam, piracetam and mexidol on passive avoidance response. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(4):270–276. (In Russ.)

Views: 594


ISSN 0137-0952 (Print)