Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

The effect of the microalga Chlorella vulgaris IPPAS C-1 (Chlorophyceae) biomass application on yield, biological activity, and the microbiome of the soil during bean growing

Abstract

The current problem with phosphorus fertilizers are shortage of rock phosphate from which it is produced and adverse impact of their production and use on the environment. A promising solution is use of phosphorus-rich biomass of microalgae as biofertilizer, but possible impact of such fertilizers on the biological activity and microbiome of soils remain unknown in many aspects. We investigated the effect of Chlorella vulgaris IPPAS C-1 biomass application on yield, biological activity, efficacy of the rhizobia- and cyanobacteria-based growth promoting formulations, as well as the microbiome of the soil during cultivation of beans (Phaseolus vulgaris L.) cvr. «Strela». Total and specific yield, actual nitrification and denitrification, carbon dioxide and methane emission were determined for soil samples from the rhizosphere. The taxonomic structure of the prokaryotic community of the bean rhizosphere was determined by NGS of 16s rRNA gene amplicons on the Illumina platform. The metagenomic data were analyzed using software tools QIIME and VAMPS. It was found that the application of biomass of C. vulgaris IPPAS C-1 as a phosphorus biofertilizer increased the bulk yield of beans. It also allowed to achieve the specific yield (per plant) level provided by traditional fertilizers. The biomass application did not (i) impact the biological activity of the soil, (ii) did not increase the level of denitrification, and (iii) did not increase significantly the soil emission of the «greenhouse gases». The Chlorella biomass application hamper the growth-promoting effect of the bacterial preparations made from rhizobia and cyanobacteria. Also, no significant changes in the taxonomic composition of the soil of the rhizosphere microbiome upon the application of the Chlorella biomass were revealed. Collectively, the results indicate the possibility of at least partial replacement of chemical fertilizers with phosphorus biofertilizers from microalgae biomass in the field growing of beans.

About the Authors

A. A. Kublanovskaya
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology Lomonosov MSU.

Leninskiye Gori 1—12, Moscow



S. A. Khapchaeva
Federal Research Centre «Fundamentals of Biotechnology», RAS
Russian Federation

Leninsky Prospekt 33—2, Moscow, 119071



V. S. Zotov
Federal Research Centre «Fundamentals of Biotechnology», RAS
Russian Federation

Leninsky Prospekt 33—2, Moscow, 119071



P. A. Zaytsev
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology Lomonosov MSU.

Leninskiye Gori 1—12, Moscow



E. S. Lobakova
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology Lomonosov MSU.

Leninskiye Gori 1—12, Moscow



А. E. Solovchenko
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology Lomonosov MSU.

Leninskiye Gori 1—12, Moscow



References

1. Daneshgar S., Callegari A., Capodaglio A., Vaccari D. The potential phosphorus crisis: resource conservation and possible escape technologies: a review // Resources. 2018. Vol. 7. N 2: 3

2. Melia P.M., Cundy A.B., Sohi S.P., Hooda P.S., Busquets R. Trends in the recovery of phosphorus in bioavailable forms from wastewater // Chemosphere. 2017. Vol. 186. P. 381-395.

3. Solovchenko A., Verschoor A.M., Jablonowski N.D., Nedbal L. Phosphorus from wastewater to crops: An alternative path involving microalgae // Biotechnol. Adv. 2016. Vol. 34. N 5. P. 550-564.

4. Mulbry W., Westhead E.K., Pizarro C., Sikora L. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer // Bioresource Technol. 2005. Vol. 96. N 4. P. 451-458.

5. Schreiber C., Schiedung H., Harrison L. et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants // J. Appl. Phycol. 2018. Vol. 30. N 5. P. 2827-2836.

6. Kuznetsov A.G., Pogosyan S.I., Konyukhov I.V., Vasilieva S.G., Lukyanov A.A., Zotov V.S., Nedbal L., Solovchenko A.E. Possibilities of optical monitoring of phosphorus starvation in suspensions of microalga Chlorella vulgaris IPPAS C-1 (Chlorophyceae) // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N. 3. P. 118-123.

7. Solovchenko A., Khozin-Goldberg I., Selyakh I. et al. Phosphorus starvation and luxury uptake in green microalgae revisited // Algal Res. 2019. Vol. 43: 101651.

8. Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных культур. М.: Изд-во МСХА, 1998. 326 с.

9. Kublanovskaya A., Chekanov K., Solovchenko A., Lobakova E. Cyanobacterial diversity in the algal-bacterial consortia from Subarctic regions: new insights from the rock baths at White Sea Coast // Hydrobiologia. 2019. Vol. 830. N 1. P. 17-31.

10. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil // ISME J. 2011. Vol. 5. P. 908-916.

11. Caporaso J.G., Kuczynski J., Stombaugh J. et al. QIIME allows analysis of high-throughput community sequencing data // Nat. Methods. 2010. Vol. 7. P. 335-336.

12. Huse S.M., Welch D.B.M., Voorhis A., Shipunova A., Morrison H.G., Eren A.M., Sogin M. L. VAMPS: a website for visualization and analysis of microbial population structures // BMC Bioinformatics. 2014. Vol. 15: 41.

13. Yilmaz P., Parfrey L.W., Yarza P., Gerken J., Pruesse E., Quast C., Schweer T., Peplies J., Ludwig W., Glockner F.O. The SILVA and «all-species living tree project (LTP)» taxonomic frameworks // Nucleic Acids Res. 2013. Vol. 42. N D1. P. D643-D648.

14. Horn H.S. Measurement of «overlap» in comparative ecological studies // Am. Nat. 1966. Vol. 100. N 914. P. 419-424.

15. Smith K.A., Ball T., Conen F., Dobbie K.E., Massheder J., Rey A. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes // Eur. J. Soil Sci. 2003. Vol. 54. N 4. P. 779-791.

16. Chang H.X., Haudenshield J.S., Bowen C.R., Hartman G.L. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity // Front. Microbiol. 2017. Vol. 8: 519.

17. Ofek M., Hadar Y., Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae) // PloS One. 2012. Vol. 7. N 7: e40117.

18. Perez-Jaramillo J.E., Carriyn V.J., Bosse M., Fe^o L.F., de Hollander M., Garcia A.A., Ramirez C.A., Mendes R., Raaijmakers J.M. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits // ISME J. 2017. Vol. 11. N 10. P. 2244-2257.

19. Campisano A., Albanese D., Yousaf S., Pancher M., Donati C., Pertot I. Temperature drives the assembly of endophytic communities’ seasonal succession // Environ. Microbiol. 2017. Vol. 19. N 8. P. 3353-3364.

20. Novello G., Gamalero E., Bona E., Boatti L., Mignone F., Massa N., Cesaro P., Lingua G., Berta G. The rhizosphere bacterial microbiota of Vitis vinifera cv. pinot noir in an integrated pest management vineyard // Front. Microbiol. 2017. Vol. 8: 1528.

21. Beck D.P., Materon L.A., Afandi F. Practical Rhizobium-legume technology manual. Technical manual No. 19. Aleppo: ICARDA, 1993. 389 pp.

22. Мишустин Е.Н. Клубеньковые бактерии и инокуляционный процесс. М.: Наука, 1973. 149 с.

23. Fahrbach M., Kuever J., Remesch M., Huber B.E., Kampfer P., Dott W., Hollender J. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormonedegrading gammaproteobacterium // Int. J. Syst. Evol. Micr. 2008. Vol. 58. N 9. P. 2215-2223.

24. Kalyuzhnaya M.G., Beck D.A., Suciu D., Pozhitkov A., Lidstrom M.E., Chistoserdova L. Functioning in situ: gene expression in Methylotenera mobilis in its native environment as assessed through transcriptomics // ISME J. 2010. Vol. 4. N 3. P. 388-398.


Review

For citations:


Kublanovskaya A.A., Khapchaeva S.A., Zotov V.S., Zaytsev P.A., Lobakova E.S., Solovchenko А.E. The effect of the microalga Chlorella vulgaris IPPAS C-1 (Chlorophyceae) biomass application on yield, biological activity, and the microbiome of the soil during bean growing. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(4):284–293. (In Russ.)

Views: 406


ISSN 0137-0952 (Print)