The interaction peculiarities in vitro OF osteoblast-like cells mg-63 with surface of Ti-Zr-Nb shape memory alloy
Abstract
The paper studies the influence of the Ti-Zr-Nb (TZN) shape memory alloys surface on adhesion, proliferation, viability and actin cytoskeleton organization of osteoblast-like cells MG-63. The studied materials have a unique combination of mechanical properties that determine their prospects for creating bone implants with high biomechanical compatibility: low value of the Young’s modulus and superelastic behavior, similar to the behavior of bone tissue. We used thin plates of the experimental alloy TZN and the Ti-Al-Nb medical alloy (TAN) as a control material. A study of the growth dynamics of the MG-63 cell culture was made using the MTT test and counting the number of nuclei per unit area using scanning microscopy. It was found that on 4 and 7 days the number of cells on the TZN alloy is higher than on the TAN alloy. This may be due to the influence of the qualitative and quantitative composition of materials on the surface microstructure and chemistry. The viability over the cultivation time was close to 100% on both alloys. The analysis of cytoskeleton images showed the predominance of fibrillary actin on samples of the TZN system, as well as the organization characteristic of fibroblast-like polygonal cells.
About the Authors
A. S. SoldatenkoRussian Federation
Department of Bioengineering Lomonosov MSU.
Leninskiye Gory, Moscow, 119234
M. A. Karachevtseva
Russian Federation
Department of Bioengineering Lomonosov MSU.
Leninskiye Gory, Moscow, 119234
V. A. Sheremetyev
Russian Federation
Leninsky Prospect 4, Moscow, 119049
A. A. Kudryashova
Russian Federation
Leninsky Prospect 4, Moscow, 119049
A. Yu. Arkhipova
Russian Federation
Laboratory of Confocal Microscopy, Faculty of Biology Lomonosov MSU.
Leninskiye Gory, Moscow, 119234; Schepkina ul. 61/2, Moscow, 129110
V. A. Andreev
Russian Federation
Leninsky Prospect 49, Moscow, 119334
S. D. Prokoshkin
Russian Federation
Leninsky Prospect 4, Moscow, 119049
V. Brailovski
Canada
1100 Rue Notre-Dame Ouest, Montmal, QC H3C 1K3
M. M. Moisenovich
Russian Federation
Laboratory of Confocal Microscopy, Faculty of Biology Lomonosov MSU.
Leninskiye Gory, Moscow, 119234
K. V. Shaitan
Russian Federation
Department of Bioengineering Lomonosov MSU.
Leninskiye Gory, Moscow, 119234
References
1. Kim H.Y., Fu J., Tobe H., Kim J.I., Miyazaki S. Shape memory and superelasticity // Shape Mem. Superelasticity. 2015. Vol. 1. N 2. P. 107-116.
2. Niinomi M, Boehlert C.J. Advances in metallic biomaterials. Heidelberg: Springer Berlin Heidelberg, 2015. 348 pp.
3. Rho J.Y., Ashman R.B., Turner C.H. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements // J. Biomech. 1993. Vol. 26. N 2. P. 111-119.
4. Magaye R, Zhao J., Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel-and copper-based nanoparticles // Exp. Ther. Med. 2012. Vol. 4. N 4. P. 551-561.
5. Prokoshkin S, Brailovski V., Dubinskiy S, Zhukova Y, Sheremetyev V., Konopatsky A., Inaekyan
6. K. Manufacturing, structure control, and functional testing of Ti-Nb-based SMA for medical application // Shape Mem. Superelasticity. 2016. Vol. 2. N 2. P. 130-144.
7. Galkin S.P. Trajectory of deformed metal as basis for controlling radially shifted and screw rolling // Steel Transl. 2004. Vol. 7. P. 63-67.
8. Sheremetyev V., Kudryashova A., Cheverikin V., Korotitskiy A., Galkin S, Prokoshkin S, Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at.%) alloy for bone implants: microstructure, texture and functional properties // J. Alloys Compd. 2019. Vol. 800. P. 320-326.
9. Novaes Jr. A.B., de Souza S.L.S., de Barros R. R.M., Pereira KKY., Iezzi G., PiattelliA. Influence of implant surfaces on osseointegration // Braz. Dent. J. 2010. Vol. 21. N 6. P. 471-481.
10. Cvijovic-Alagic I., Cvijovic Z, Bajat J., Rakin M. Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys // Corros. Sci. 2014. Vol. 83. P. 245-254.
11. Sheremetyev V., Brailovski V., Prokoshkin S. , Inaekyan K., Dubinskiy S. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr (at%) alloy for load-bearing biomedical applications // Mater. Sci. Eng. C. 2016. Vol. 58. P. 935-944.
12. Sheremetyev V., Kudryashova A., Dubinskiy S., Galkin S., Prokoshkin S., Brailovski V. Structure and functional properties of metastable beta Ti-18Zr-14Nb (at.%) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment // J. Alloys Compd. 2018. Vol. 737. P. 678-683.
13. Chen S., Guo Y., Liu R., Wu S., Fang J., Huang B., Li Z., Chen Zh., Chen Z Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration // Colloid Surface B. 2018. Vol. 164. P. 58-69.
14. Nabavi N., Khandani A., Camirand A., Harrison R.E. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion // Bone. 2011. Vol. 49. N. 5. P. 965-974.
15. Hentze M.W., Muckenthaler M.U., Galy B., Camaschella C. Two to tango: regulation of mammalian iron metabolism // Cell. 2010. Vol. 142. N. 1. P. 24-38.
16. Gyorgyey A., Ungvari K., Kecskemeti G., Kopniczky J., Hopp B., Oszko A., Pelsoczi I., Rakonczay Z., Nagy K., Turzo K Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material // Mater. Sci. Eng. C. 2013. Vol. 33. N. 7. P. 4251-4259.
17. Al-Mobarak N.A., Al-Swayih A.A., Al-Rashoud F.A. Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications // Int. J. Electrochem. Sci. 2011. Vol. 6. N 6. P. 2031-2042.
18. Моисеев В.Н. Бета-титановые сплавы и перспективы их развития // МиТОМ. 1998. Т. 1. № 12. P. 11-14.
19. Anselme K., Linez P., Bigerelle M., Le Maguer D., Le Maguer A., Hardouin P., Hildebrand H.F., Iost A., Leroy J.M. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour // Biomaterials. 2000. Vol. 21. N 15. P. 1567-1577.
20. Шугалей И.В., Гарабаджиу А.В, Илюшин М.А., Судариков А.М. Некоторые аспекты влияния алюминия и его соединений на живые организмы // Экол. хим. 2012. Т. 21. № 3. С. 168-172.
21. Bonartsev A., Zharkova I., Yakovlev S, et al. 3D-scaffolds from poly(3-hydroxybutyrate) poly(ethylene glycol) copolymer for tissue engineering // J. Biomater. Tissue Eng. 2016. Vol. 6. N 1. P. 42-52.
22. Ozdemir T, Higgins A.M., Brown J.L. Osteoinductive biomaterial geometries for bone regenerative engineering // Curr. Pharm. Des. 2013. Vol. 19. N. 19. P. 3446-3455.
23. Goncharenko A., Malyuchenko N, Moisenovich A., Kotlyarova M, Arkhipova A., Kon ’kov A., Agapov I., Molochkov A., Moisenovich M, Kirpichnikov M. Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds // Dokl. Biochem. Biophys. 2016. Vol. 470. N 1. P. 368-370.
24. Rottmar M, Lischer S, Pleskova M, Bruinink A., Maniura-Weber K. Correlating cell architecture with osteogenesis: first steps towards live single cell monitoring // Eur. Cells Mater. 2009. Vol. 18. N 18. P. 59-62.
25. Maya A.E.A., Grana D.R, Hazarabedian A., Kokubu G.A., Luppo M.I., Vigna G. Zr-Ti-Nb porous alloys for biomedical application // Mater. Sci. Eng. C. 2012. Vol. 32. N 2. P. 321-329.
26. Sollazzo V., Palmieri A., Pezzetti F., Bignozzi C.A., Argazzi R, Massari L., Brunelli G., Carina F. Genetic effect of zirconium oxide coating on osteoblast-like cells // J. Biomed. Mater. Res. - Part B Appl. Biomater. 2008. Vol. 84. N 2. P. 550-558.
Review
For citations:
Soldatenko A.S., Karachevtseva M.A., Sheremetyev V.A., Kudryashova A.A., Arkhipova A.Yu., Andreev V.A., Prokoshkin S.D., Brailovski V., Moisenovich M.M., Shaitan K.V. The interaction peculiarities in vitro OF osteoblast-like cells mg-63 with surface of Ti-Zr-Nb shape memory alloy. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(4):313–320. (In Russ.)